Skip to content

robinthibaut/skbel

Repository files navigation

Travis Doc Black PythonVersion PyPi DOI Downloads

https://raw.githubusercontent.com/robinthibaut/skbel/master/docs/img/illu-01.png

skbel is a Python module for implementing the Bayesian Evidential Learning framework built on top of scikit-learn and is distributed under the 3-Clause BSD license.

For more information, read the documentation and run the example notebook.

Installation

Dependencies

skbel requires:

  • Python (>= 3.7)
  • Scikit-Learn (>= 0.24.1)
  • NumPy (>= 1.14.6)
  • SciPy (>= 1.1.0)
  • joblib (>= 0.11)

Skbel plotting capabilities require Matplotlib (>= 2.2.2).

User installation

The easiest way to install skbel is using pip

pip install skbel

Development

We welcome new contributors of all experience levels.

Important links

Source code

You can check the latest sources with the command:

git clone https://github.com/robinthibaut/skbel.git

Contributing

Contributors and feedback from users are welcome. Don't hesitate to submit an issue or a PR, or request a new feature.

Testing

After installation, you can launch the test suite from outside the source directory (you will need to have pytest >= 5.0.1 installed):

pytest skbel

Help and Support

Documentation

Communication

How to cite

Thibaut, Robin, & Maximilian Ramgraber. (2021). SKBEL - Bayesian Evidential Learning framework built on top of scikit-learn (v2.0.0). Zenodo. https://doi.org/10.5281/zenodo.6205242

BibTeX:

@software{thibaut_skbel_2021,
author       = {Thibaut, Robin and Maximilian Ramgraber},
title        = {{SKBEL} - Bayesian Evidential Learning framework built on top of scikit-learn},
month        = {9},
year         = 2021,
publisher    = {Zenodo},
version      = {v2.0.0},
doi          = {10.5281/zenodo.6205242},
url          = {https://doi.org/10.5281/zenodo.6205242},
}

Notebooks and tutorials

Nolwenn Lesparre, Nicolas Compaire, Thomas Hermans and Robin Thibaut. (2022). 4D Temperature Monitoring with BEL. [Dataset]. Kaggle. doi: 10.34740/kaggle/ds/2275519. url: https://doi.org/10.34740/kaggle/ds/2275519

Thibaut, Robin (2021). WHPA Prediction. [Dataset]. Kaggle. doi:10.34740/kaggle/dsv/2648718. url: https://www.kaggle.com/dsv/2648718

Peer-reviewed publications using SKBEL

Thibaut, Robin, Nicolas Compaire, Nolwenn Lesparre, Maximilian Ramgraber, Eric Laloy, and Thomas Hermans (Nov. 2022). “Comparing Well and Geophysical Data for Temperature Monitoring Within a Bayesian Experimental Design Framework”. In: Water Resources Research 58 (11). issn: 0043-1397. doi: 10.1029/2022WR033045. url: https://onlinelibrary.wiley.com/doi/10.1029/2022WR033045.

Thibaut, Robin, Eric Laloy, and Thomas Hermans (Dec. 2021). “A new framework for experimental design using Bayesian Evidential Learning: The case of wellhead protection area”. In: Journal of Hydrology 603, p. 126903. issn: 00221694. doi: 10.1016/j.jhydrol.2021.126903. url: https://linkinghub.elsevier.com/retrieve/pii/S0022169421009537.

Research project

Logs and results of the research project are available on the project page.