forked from openvinotoolkit/openvino
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge remote-tracking branch 'upstream/master' into revise_op_select
- Loading branch information
Showing
38 changed files
with
1,276 additions
and
1,995 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
173 changes: 173 additions & 0 deletions
173
docs/template_plugin/tests/functional/op_reference/base_reference_test.cpp
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,173 @@ | ||
// Copyright (C) 2018-2021 Intel Corporation | ||
// SPDX-License-Identifier: Apache-2.0 | ||
// | ||
#include "base_reference_test.hpp" | ||
|
||
#include <gtest/gtest.h> | ||
|
||
#include "transformations/utils/utils.hpp" | ||
|
||
using namespace InferenceEngine; | ||
|
||
CommonReferenceTest::CommonReferenceTest(): targetDevice("TEMPLATE") { | ||
core = PluginCache::get().ie(targetDevice); | ||
} | ||
|
||
void CommonReferenceTest::Exec() { | ||
LoadNetwork(); | ||
FillInputs(); | ||
Infer(); | ||
Validate(); | ||
} | ||
|
||
void CommonReferenceTest::LoadNetwork() { | ||
InferenceEngine::CNNNetwork cnnNetwork(function); | ||
auto inputInfo = cnnNetwork.getInputsInfo(); | ||
auto outputInfo = cnnNetwork.getOutputsInfo(); | ||
for (const auto& param : function->get_parameters()) { | ||
inputInfo[param->get_friendly_name()]->setPrecision(InferenceEngine::details::convertPrecision(param->get_element_type())); | ||
} | ||
for (const auto& result : function->get_results()) { | ||
outputInfo[ngraph::op::util::create_ie_output_name(result->input_value(0))]->setPrecision( | ||
InferenceEngine::details::convertPrecision(result->get_element_type())); | ||
} | ||
executableNetwork = core->LoadNetwork(cnnNetwork, targetDevice); | ||
} | ||
|
||
void CommonReferenceTest::FillInputs() { | ||
const auto& inputInfo = executableNetwork.GetInputsInfo(); | ||
const auto& params = function->get_parameters(); | ||
ASSERT_EQ(params.size(), inputData.size()); | ||
ASSERT_EQ(inputInfo.size(), inputData.size()); | ||
|
||
for (size_t i = 0; i < params.size(); i++) { | ||
const auto& param = params[i]; | ||
const auto infoIt = inputInfo.find(param->get_friendly_name()); | ||
GTEST_ASSERT_NE(infoIt, inputInfo.cend()); | ||
|
||
const auto& info = infoIt->second; | ||
auto blob = make_blob_with_precision(info->getTensorDesc()); | ||
blob->allocate(); | ||
|
||
ASSERT_EQ(blob->byteSize(), inputData[i]->byteSize()); | ||
|
||
MemoryBlob::Ptr mInputData = as<MemoryBlob>(inputData[i]); | ||
ASSERT_NE(mInputData, nullptr); | ||
auto minputDataHolder = mInputData->rmap(); | ||
|
||
MemoryBlob::Ptr mBlob = as<MemoryBlob>(blob); | ||
ASSERT_NE(mBlob, nullptr); | ||
auto mBlobHolder = mBlob->wmap(); | ||
|
||
std::memcpy(mBlobHolder.as<void*>(), minputDataHolder.as<const void*>(), inputData[i]->byteSize()); | ||
inputData[i] = blob; | ||
} | ||
} | ||
|
||
void CommonReferenceTest::Infer() { | ||
inferRequest = executableNetwork.CreateInferRequest(); | ||
|
||
const auto& inputsInfo = executableNetwork.GetInputsInfo(); | ||
const auto& functionParams = function->get_parameters(); | ||
for (size_t i = 0; i < functionParams.size(); ++i) { | ||
const auto& param = functionParams[i]; | ||
const auto infoIt = inputsInfo.find(param->get_friendly_name()); | ||
GTEST_ASSERT_NE(infoIt, inputsInfo.cend()); | ||
|
||
const auto& info = infoIt->second; | ||
auto blob = inputData[i]; | ||
|
||
inferRequest.SetBlob(info->name(), blob); | ||
} | ||
inferRequest.Infer(); | ||
} | ||
|
||
void CommonReferenceTest::Validate() { | ||
ASSERT_EQ(executableNetwork.GetOutputsInfo().size(), refOutData.size()); | ||
std::vector<InferenceEngine::Blob::Ptr> outputs; | ||
for (const auto& result : function->get_results()) { | ||
auto name = ngraph::op::util::create_ie_output_name(result->input_value(0)); | ||
outputs.emplace_back(inferRequest.GetBlob(name)); | ||
} | ||
|
||
ASSERT_EQ(refOutData.size(), outputs.size()); | ||
for (size_t i = 0; i < refOutData.size(); i++) { | ||
ValidateBlobs(refOutData[i], outputs[i]); | ||
} | ||
} | ||
void CommonReferenceTest::ValidateBlobs(const InferenceEngine::Blob::Ptr& refBlob, const InferenceEngine::Blob::Ptr& outBlob) { | ||
ASSERT_TRUE(refBlob != nullptr); | ||
ASSERT_TRUE(outBlob != nullptr); | ||
ASSERT_EQ(refBlob->getTensorDesc().getPrecision(), outBlob->getTensorDesc().getPrecision()); | ||
ASSERT_EQ(refBlob->byteSize(), outBlob->byteSize()); | ||
|
||
auto mRef = as<InferenceEngine::MemoryBlob>(refBlob); | ||
IE_ASSERT(mRef); | ||
const auto refLockMemory = mRef->rmap(); | ||
const auto refBuffer = refLockMemory.as<const std::uint8_t*>(); | ||
|
||
auto mOut = as<InferenceEngine::MemoryBlob>(outBlob); | ||
IE_ASSERT(mOut); | ||
const auto outLockMemory = mOut->rmap(); | ||
const auto outBuffer = outLockMemory.as<const std::uint8_t*>(); | ||
|
||
const auto& precision = refBlob->getTensorDesc().getPrecision(); | ||
switch (precision) { | ||
case InferenceEngine::Precision::BF16: | ||
LayerTestsUtils::LayerTestsCommon::Compare<ngraph::bfloat16, ngraph::bfloat16>( | ||
reinterpret_cast<const ngraph::bfloat16*>(refBuffer), reinterpret_cast<const ngraph::bfloat16*>(outBuffer), refBlob->size(), threshold); | ||
break; | ||
case InferenceEngine::Precision::FP16: | ||
LayerTestsUtils::LayerTestsCommon::Compare<ngraph::float16, ngraph::float16>( | ||
reinterpret_cast<const ngraph::float16*>(refBuffer), reinterpret_cast<const ngraph::float16*>(outBuffer), refBlob->size(), threshold); | ||
break; | ||
case InferenceEngine::Precision::FP32: | ||
LayerTestsUtils::LayerTestsCommon::Compare<float, float>(reinterpret_cast<const float*>(refBuffer), reinterpret_cast<const float*>(outBuffer), | ||
refBlob->size(), threshold); | ||
break; | ||
case InferenceEngine::Precision::I8: | ||
LayerTestsUtils::LayerTestsCommon::Compare<int8_t, int8_t>(reinterpret_cast<const int8_t*>(refBuffer), reinterpret_cast<const int8_t*>(outBuffer), | ||
refBlob->size(), threshold); | ||
break; | ||
case InferenceEngine::Precision::I16: | ||
LayerTestsUtils::LayerTestsCommon::Compare<int16_t, int16_t>(reinterpret_cast<const int16_t*>(refBuffer), reinterpret_cast<const int16_t*>(outBuffer), | ||
refBlob->size(), threshold); | ||
break; | ||
case InferenceEngine::Precision::I32: | ||
LayerTestsUtils::LayerTestsCommon::Compare<int32_t, int32_t>(reinterpret_cast<const int32_t*>(refBuffer), reinterpret_cast<const int32_t*>(outBuffer), | ||
refBlob->size(), threshold); | ||
break; | ||
case InferenceEngine::Precision::I64: | ||
LayerTestsUtils::LayerTestsCommon::Compare<int64_t, int64_t>(reinterpret_cast<const int64_t*>(refBuffer), reinterpret_cast<const int64_t*>(outBuffer), | ||
refBlob->size(), threshold); | ||
break; | ||
case InferenceEngine::Precision::BOOL: | ||
case InferenceEngine::Precision::U8: | ||
LayerTestsUtils::LayerTestsCommon::Compare<uint8_t, uint8_t>(reinterpret_cast<const uint8_t*>(refBuffer), reinterpret_cast<const uint8_t*>(outBuffer), | ||
refBlob->size(), threshold); | ||
break; | ||
case InferenceEngine::Precision::U16: | ||
LayerTestsUtils::LayerTestsCommon::Compare<uint16_t, uint16_t>(reinterpret_cast<const uint16_t*>(refBuffer), | ||
reinterpret_cast<const uint16_t*>(outBuffer), refBlob->size(), threshold); | ||
break; | ||
case InferenceEngine::Precision::U32: | ||
LayerTestsUtils::LayerTestsCommon::Compare<uint32_t, uint32_t>(reinterpret_cast<const uint32_t*>(refBuffer), | ||
reinterpret_cast<const uint32_t*>(outBuffer), refBlob->size(), threshold); | ||
break; | ||
case InferenceEngine::Precision::U64: | ||
LayerTestsUtils::LayerTestsCommon::Compare<uint64_t, uint64_t>(reinterpret_cast<const uint64_t*>(refBuffer), | ||
reinterpret_cast<const uint64_t*>(outBuffer), refBlob->size(), threshold); | ||
break; | ||
case InferenceEngine::Precision::I4: | ||
case InferenceEngine::Precision::U4: | ||
LayerTestsUtils::LayerTestsCommon::Compare<uint8_t, uint8_t>(reinterpret_cast<const uint8_t*>(refBuffer), reinterpret_cast<const uint8_t*>(outBuffer), | ||
refBlob->size() / 2, threshold); | ||
break; | ||
case InferenceEngine::Precision::BIN: | ||
LayerTestsUtils::LayerTestsCommon::Compare<uint8_t, uint8_t>(reinterpret_cast<const uint8_t*>(refBuffer), reinterpret_cast<const uint8_t*>(outBuffer), | ||
refBlob->size() / 8, threshold); | ||
break; | ||
default: | ||
FAIL() << "Comparator for " << precision << " precision isn't supported"; | ||
} | ||
} |
53 changes: 53 additions & 0 deletions
53
docs/template_plugin/tests/functional/op_reference/base_reference_test.hpp
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,53 @@ | ||
// Copyright (C) 2018-2021 Intel Corporation | ||
// SPDX-License-Identifier: Apache-2.0 | ||
// | ||
|
||
#include <ie_core.hpp> | ||
#include <ie_ngraph_utils.hpp> | ||
#include <ngraph/ngraph.hpp> | ||
#include <shared_test_classes/base/layer_test_utils.hpp> | ||
|
||
class CommonReferenceTest { | ||
public: | ||
CommonReferenceTest(); | ||
|
||
void Exec(); | ||
|
||
void LoadNetwork(); | ||
|
||
void FillInputs(); | ||
|
||
void Infer(); | ||
|
||
void Validate(); | ||
|
||
private: | ||
void ValidateBlobs(const InferenceEngine::Blob::Ptr& refBlob, const InferenceEngine::Blob::Ptr& outBlob); | ||
|
||
protected: | ||
const std::string targetDevice; | ||
std::shared_ptr<InferenceEngine::Core> core; | ||
std::shared_ptr<ngraph::Function> function; | ||
|
||
InferenceEngine::ExecutableNetwork executableNetwork; | ||
InferenceEngine::InferRequest inferRequest; | ||
std::vector<InferenceEngine::Blob::Ptr> inputData; | ||
std::vector<InferenceEngine::Blob::Ptr> refOutData; | ||
float threshold = 1e-2f; | ||
}; | ||
|
||
template <class T> | ||
InferenceEngine::Blob::Ptr CreateBlob(const ngraph::element::Type& element_type, const std::vector<T>& values, size_t size = 0) { | ||
size_t real_size = size ? size : values.size() * sizeof(T) / element_type.size(); | ||
auto blob = make_blob_with_precision( | ||
InferenceEngine::TensorDesc(InferenceEngine::details::convertPrecision(element_type), {real_size}, InferenceEngine::Layout::C)); | ||
blob->allocate(); | ||
InferenceEngine::MemoryBlob::Ptr minput = InferenceEngine::as<InferenceEngine::MemoryBlob>(blob); | ||
IE_ASSERT(minput); | ||
auto minputHolder = minput->wmap(); | ||
|
||
std::memcpy(minputHolder.as<void*>(), values.data(), std::min(real_size * element_type.size(), sizeof(T) * values.size())); | ||
|
||
return blob; | ||
} | ||
|
Oops, something went wrong.