forked from tensorflow/tflite-micro
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feat(compression): add facade for working with tflite.Model
Add a module that provides convenient navigation, data type conversions, and utilities for working with a tflite.Model, which can be tedious and verbose to work with directly. BUG=tensorflow#2636
- Loading branch information
Showing
3 changed files
with
411 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,262 @@ | ||
# Copyright 2024 The TensorFlow Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# | ||
"""A facade for working with tflite.Model. | ||
This module provides convenient navigation, data type conversions, and | ||
utilities for working with a tflite.Model, which can be tedious and verbose to | ||
work with directly. | ||
Usage: | ||
model = model_facade.read(flatbuffer) | ||
# manipulate | ||
new_flatbuffer = model.compile() | ||
""" | ||
|
||
import flatbuffers | ||
import numpy as np | ||
from numpy.typing import NDArray | ||
from tflite_micro.tensorflow.lite.python import schema_py_generated as tflite | ||
from typing import ByteString, Generic, TypeVar | ||
|
||
_IteratorTo = TypeVar("_IteratorTo") | ||
|
||
|
||
class _Iterator(Generic[_IteratorTo]): | ||
|
||
def __init__(self, sequence, cls, parent): | ||
self._sequence = sequence | ||
self._cls = cls | ||
self._index = 0 | ||
self._parent = parent | ||
|
||
def __getitem__(self, key) -> _IteratorTo: | ||
return self._cls(self._sequence[key], key, self._parent) | ||
|
||
def __len__(self): | ||
return len(self._sequence) | ||
|
||
def __iter__(self): | ||
self._index = 0 | ||
return self | ||
|
||
def __next__(self): | ||
try: | ||
result = self[self._index] | ||
self._index += 1 | ||
return result | ||
except IndexError: | ||
raise StopIteration | ||
|
||
|
||
class _IndirectIterator(Generic[_IteratorTo]): | ||
|
||
def __init__(self, indices, sequence): | ||
self._indices = indices | ||
self._index = 0 | ||
self._sequence = sequence | ||
|
||
def __getitem__(self, key) -> _IteratorTo: | ||
index = self._indices[key] | ||
return self._sequence[index] | ||
|
||
def __len__(self): | ||
return len(self._indices) | ||
|
||
def __iter__(self): | ||
self._index = 0 | ||
return self | ||
|
||
def __next__(self): | ||
try: | ||
result = self[self._index] | ||
self._index += 1 | ||
return result | ||
except IndexError: | ||
raise StopIteration | ||
|
||
|
||
class _Operator: | ||
|
||
def __init__(self, operator, index, subgraph): | ||
self.operator = operator | ||
self.index = index | ||
self.subgraph = subgraph | ||
|
||
@property | ||
def opcode(self) -> tflite.OperatorCodeT: | ||
return self.subgraph.model.operatorCodes[self.operator.opcodeIndex] | ||
|
||
@property | ||
def inputs(self): | ||
return _IndirectIterator(self.operator.inputs, self.subgraph.tensors) | ||
|
||
|
||
_NP_DTYPES = { | ||
tflite.TensorType.FLOAT16: np.dtype("<f2"), | ||
tflite.TensorType.FLOAT32: np.dtype("<f4"), | ||
tflite.TensorType.FLOAT64: np.dtype("<f8"), | ||
tflite.TensorType.INT8: np.dtype("<i1"), | ||
tflite.TensorType.INT16: np.dtype("<i2"), | ||
tflite.TensorType.INT32: np.dtype("<i4"), | ||
tflite.TensorType.INT64: np.dtype("<i8"), | ||
tflite.TensorType.UINT8: np.dtype("<u1"), | ||
tflite.TensorType.UINT16: np.dtype("<u2"), | ||
tflite.TensorType.UINT32: np.dtype("<u4"), | ||
tflite.TensorType.UINT64: np.dtype("<u8"), | ||
} | ||
|
||
|
||
class _Tensor: | ||
|
||
def __init__(self, tensor: tflite.TensorT, index, subgraph): | ||
self._tensor = tensor | ||
self.index = index | ||
self.subgraph = subgraph | ||
|
||
@property | ||
def name(self): | ||
n = self._tensor.name | ||
if isinstance(n, bytes): | ||
return n.decode("utf-8") | ||
else: | ||
return n | ||
|
||
@property | ||
def shape(self): | ||
"""Return the shape as specified in the model. | ||
""" | ||
return self._tensor.shape | ||
|
||
@property | ||
def buffer_index(self): | ||
return self._tensor.buffer | ||
|
||
@property | ||
def buffer(self): | ||
return self.subgraph.model.buffers[self._tensor.buffer] | ||
|
||
@property | ||
def data(self): | ||
return self.buffer.data | ||
|
||
@property | ||
def dtype(self) -> np.dtype: | ||
return _NP_DTYPES[self._tensor.type] | ||
|
||
@property | ||
def array(self) -> np.ndarray: | ||
"""Returns an array created from the Tensor's data, type, and shape. | ||
Note the bytes in the data buffer and the Tensor's type and shape may be | ||
inconsistent, and thus the returned array invalid, if the data buffer has | ||
been altered according to the compression schema, in which the data buffer | ||
is an array of fixed-width, integer fields. | ||
""" | ||
return np.frombuffer(self.data, | ||
dtype=self.dtype).reshape(self._tensor.shape) | ||
|
||
@property | ||
def quantization(self): | ||
return self._tensor.quantization | ||
|
||
|
||
class _Buffer: | ||
|
||
def __init__(self, buffer, index, model): | ||
self.buffer = buffer | ||
self.index = index | ||
self.model = model | ||
|
||
@property | ||
def data(self): | ||
return self.buffer.data | ||
|
||
@data.setter | ||
def data(self, value): | ||
self.buffer.data = value | ||
return self.data | ||
|
||
def extend(self, values: NDArray): | ||
self.buffer.data.extend(values.tobytes()) | ||
|
||
|
||
class _Subgraph: | ||
|
||
def __init__(self, subgraph, index, model): | ||
self.subgraph = subgraph | ||
self.index = index | ||
self.model = model | ||
|
||
@property | ||
def operators(self) -> _Iterator[_Operator]: | ||
return _Iterator(self.subgraph.operators, _Operator, parent=self) | ||
|
||
@property | ||
def tensors(self) -> _Iterator[_Tensor]: | ||
return _Iterator(self.subgraph.tensors, _Tensor, parent=self) | ||
|
||
|
||
class _Model: | ||
"""A facade for manipulating tflite.Model. | ||
""" | ||
|
||
def __init__(self, representation: tflite.ModelT): | ||
self.root = representation | ||
|
||
def compile(self) -> bytearray: | ||
"""Returns a tflite.Model flatbuffer. | ||
""" | ||
size_hint = 4 * 2**10 | ||
builder = flatbuffers.Builder(size_hint) | ||
builder.Finish(self.root.Pack(builder)) | ||
return builder.Output() | ||
|
||
def add_buffer(self) -> _Buffer: | ||
"""Adds a buffer to the model. | ||
""" | ||
buffer = tflite.BufferT() | ||
buffer.data = [] | ||
self.root.buffers.append(buffer) | ||
index = len(self.root.buffers) - 1 | ||
return _Buffer(buffer, index, self.root) | ||
|
||
def add_metadata(self, key, value): | ||
"""Adds a key-value pair, writing value to a newly created buffer. | ||
""" | ||
metadata = tflite.MetadataT() | ||
metadata.name = key | ||
buffer = self.add_buffer() | ||
buffer.data = value | ||
metadata.buffer = buffer.index | ||
self.root.metadata.append(metadata) | ||
|
||
@property | ||
def operatorCodes(self): | ||
return self.root.operatorCodes | ||
|
||
@property | ||
def subgraphs(self) -> _Iterator[_Subgraph]: | ||
return _Iterator(self.root.subgraphs, _Subgraph, parent=self) | ||
|
||
@property | ||
def buffers(self) -> _Iterator[_Buffer]: | ||
return _Iterator(self.root.buffers, _Buffer, parent=self) | ||
|
||
|
||
def read(buffer: ByteString): | ||
"""Reads a tflite.Model and returns a model facade. | ||
""" | ||
schema_model = tflite.ModelT.InitFromPackedBuf(buffer, 0) | ||
return _Model(schema_model) |
Oops, something went wrong.