forked from vllm-project/vllm
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Model] Expose size to Idefics3 as mm_processor_kwargs (vllm-project#…
…10146) Signed-off-by: Isotr0py <[email protected]>
- Loading branch information
Showing
4 changed files
with
270 additions
and
23 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
187 changes: 187 additions & 0 deletions
187
tests/models/decoder_only/vision_language/mm_processor_kwargs/test_idefics3.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,187 @@ | ||
"""Tests for Idefics3's multimodal preprocessing kwargs.""" | ||
from typing import Optional | ||
|
||
import pytest | ||
import torch | ||
import transformers | ||
from transformers import AutoImageProcessor, AutoTokenizer | ||
|
||
from vllm.inputs import InputContext, token_inputs | ||
from vllm.multimodal import MultiModalRegistry | ||
|
||
from .....conftest import _ImageAssets | ||
from ....utils import build_model_context | ||
|
||
models = ["HuggingFaceM4/Idefics3-8B-Llama3"] | ||
|
||
|
||
# Wrap lazy imports to avoid initializing CUDA during test collection | ||
@pytest.fixture() | ||
def input_processor_for_idefics3(): | ||
from vllm.model_executor.models.idefics3 import ( | ||
input_processor_for_idefics3) | ||
return input_processor_for_idefics3 | ||
|
||
|
||
@pytest.fixture() | ||
def dummy_data_for_idefics3(): | ||
from vllm.model_executor.models.idefics3 import dummy_data_for_idefics3 | ||
return dummy_data_for_idefics3 | ||
|
||
|
||
@pytest.fixture() | ||
def get_max_idefics3_image_tokens(): | ||
from vllm.model_executor.models.idefics3 import ( | ||
get_max_idefics3_image_tokens) | ||
return get_max_idefics3_image_tokens | ||
|
||
|
||
@pytest.mark.skipif(transformers.__version__ < "4.46.0", | ||
reason="Model introduced in HF >= 4.46.0") | ||
@pytest.mark.parametrize("model", models) | ||
@pytest.mark.parametrize("longest_edge", [None, 168, 336, 400, 2 * 336]) | ||
def test_input_mapper_override(model: str, image_assets: _ImageAssets, | ||
longest_edge: Optional[int]): | ||
"""Ensure that the [default] input mapper handles size properly.""" | ||
|
||
mm_processor_kwargs = { | ||
"size": { | ||
"longest_edge": longest_edge | ||
} | ||
} if longest_edge is not None else {} | ||
ctx = build_model_context( | ||
model_name=model, | ||
tokenizer_name=model, | ||
trust_remote_code=True, | ||
mm_processor_kwargs=mm_processor_kwargs, | ||
) | ||
|
||
hf_processor = AutoImageProcessor.from_pretrained(model, | ||
trust_remote_code=True, | ||
**mm_processor_kwargs) | ||
|
||
mm_registry = MultiModalRegistry() | ||
mm_registry.init_mm_limits_per_prompt(ctx.model_config) | ||
|
||
image = image_assets[0].pil_image | ||
hf_result = hf_processor.preprocess( | ||
image, | ||
return_tensors="pt", | ||
) | ||
|
||
vllm_result = mm_registry.map_input( | ||
ctx.model_config, | ||
{"image": image}, | ||
) | ||
|
||
assert torch.all(hf_result["pixel_values"] == vllm_result["pixel_values"]) | ||
|
||
|
||
@pytest.mark.skipif(transformers.__version__ < "4.46.0", | ||
reason="Model introduced in HF >= 4.46.0") | ||
@pytest.mark.parametrize("model", models) | ||
@pytest.mark.parametrize("longest_edge, expected_max_tokens", [ | ||
(None, 2873), | ||
(168, 169), | ||
(336, 169), | ||
(400, 338), | ||
(672, 338), | ||
]) | ||
def test_max_tokens_override(get_max_idefics3_image_tokens, model: str, | ||
longest_edge: Optional[int], | ||
expected_max_tokens: int): | ||
"""Ensure get_max_idefics3_image_tokens handles mm_processor_kwargs.""" | ||
size = {"longest_edge": longest_edge} if longest_edge is not None else None | ||
ctx = build_model_context( | ||
model_name=model, | ||
tokenizer_name=model, | ||
trust_remote_code=True, | ||
mm_processor_kwargs=None, | ||
) | ||
|
||
actual_max_tokens = get_max_idefics3_image_tokens( | ||
ctx=InputContext(ctx.model_config), | ||
size=size, | ||
) | ||
|
||
assert expected_max_tokens == actual_max_tokens | ||
|
||
|
||
@pytest.mark.skipif(transformers.__version__ < "4.46.0", | ||
reason="Model introduced in HF >= 4.46.0") | ||
@pytest.mark.parametrize("model", models) | ||
@pytest.mark.parametrize("longest_edge, toks_per_img, num_imgs", [ | ||
(168, 169, 1), | ||
(168, 169, 2), | ||
(400, 338, 1), | ||
(400, 338, 2), | ||
]) | ||
def test_dummy_data_override(dummy_data_for_idefics3, model: str, | ||
longest_edge: int, toks_per_img: int, | ||
num_imgs: int): | ||
"""Ensure dummy_data_for_idefics3 handles num_crops properly.""" | ||
# Same as the previous test - don't initialize mm_processor_kwargs | ||
# in this test and assume that the kwargs will be correctly expanded by | ||
# the partial when calling the dummy data func. | ||
size = {"longest_edge": longest_edge} if longest_edge is not None else None | ||
ctx = build_model_context( | ||
model_name=model, | ||
tokenizer_name=model, | ||
trust_remote_code=True, | ||
mm_processor_kwargs=None, | ||
) | ||
|
||
dummy_data = dummy_data_for_idefics3( | ||
ctx=ctx, | ||
seq_len=8192, # Should be bigger than num_imgs * toks_per_img | ||
mm_counts={"image": num_imgs}, | ||
size=size) | ||
sequence_data = dummy_data.seq_data | ||
# Ensure we have the right number of placeholders per size | ||
image_token_id = ctx.get_hf_config().image_token_id | ||
img_tok_count = sequence_data.get_token_ids().count(image_token_id) | ||
assert img_tok_count == toks_per_img * num_imgs | ||
|
||
|
||
@pytest.mark.skipif(transformers.__version__ < "4.46.0", | ||
reason="Model introduced in HF >= 4.46.0") | ||
@pytest.mark.parametrize("model", models) | ||
@pytest.mark.parametrize("longest_edge,expected_toks_per_img,num_imgs", [ | ||
(336, 169 * (1**2 + 1), 1), | ||
(336, 169 * (1**2 + 1), 2), | ||
(400, 169 * (2**2 + 1), 1), | ||
(400, 169 * (2**2 + 1), 2), | ||
]) | ||
def test_input_processor_override(input_processor_for_idefics3, | ||
image_assets: _ImageAssets, model: str, | ||
longest_edge: int, | ||
expected_toks_per_img: int, num_imgs: int): | ||
"""Ensure input_processor_for_idefics3 handles num_crops properly.""" | ||
# Same as the previous test - don't initialize mm_processor_kwargs | ||
# in this test and assume that the kwargs will be correctly expanded by | ||
# the partial when calling the custom input processor. | ||
size = {"longest_edge": longest_edge} if longest_edge is not None else None | ||
ctx = build_model_context( | ||
model_name=model, | ||
tokenizer_name=model, | ||
trust_remote_code=True, | ||
mm_processor_kwargs=None, | ||
) | ||
|
||
# Build the image str / prompt based on the number of images we pass | ||
tokenizer = AutoTokenizer.from_pretrained(model) | ||
placeholders = "<image>" if num_imgs == 1 else "\n".join( | ||
f"Image-{i}: <image>\n" for i in range(1, num_imgs + 1)) | ||
prompt = f"<|begin_of_text|>User:{placeholders}\n<end_of_utterance>\nAssistant:" # noqa: E501 | ||
images = [image_assets[0].pil_image.resize((336 * 4, 336 * 4))] * num_imgs | ||
|
||
inputs = token_inputs(prompt_token_ids=tokenizer.encode(prompt), | ||
prompt=prompt, | ||
multi_modal_data={"image": images}) | ||
|
||
processed_inputs = input_processor_for_idefics3(ctx, inputs, size=size) | ||
|
||
# Ensure we have the right number of placeholders per num_crops size | ||
image_token_id = ctx.get_hf_config().image_token_id | ||
img_tok_count = processed_inputs["prompt_token_ids"].count(image_token_id) | ||
assert img_tok_count == expected_toks_per_img * num_imgs |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters