Skip to content

renyiryry/kbfgs_neurips2020_public

Repository files navigation

kbfgs_neurips2020_v2

This is the code for the paper Practical Quasi-Newton Methods for Training Deep Neural Networks.

Specification of dependencies

Python 3.7.6; GCC 7.3.0; Cuda compilation tools, release 10.1, V10.1.243

torch 1.4.0, numpy 1.18.1, scipy 1.4.1, pytz 2019.3, mat4py 0.4.2, psutil 5.7.0

How to get results

See Demo.ipynb for results and command to produce the results.

For the function train_model(), set the argument "home_path" as the directory containing Demo.ipynb.

To tune the hyper-paramters:

For K-BFGS, K-BFGS(L), KFAC, change the arguments "lr" and "lambda_damping" in train_model(); For Adam, RMSprop, change the arguments "lr" and "RMSprop_epsilon"; For SGD-momentum, change the arguments "lr".

BibTeX

@article{goldfarb2020practical,
  title={Practical quasi-newton methods for training deep neural networks},
  author={Goldfarb, Donald and Ren, Yi and Bahamou, Achraf},
  journal={Advances in Neural Information Processing Systems},
  volume={33},
  pages={2386--2396},
  year={2020}
}

About

No description or website provided.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published