Skip to content

Commit

Permalink
add bedrock titan embedding model blueprint (opensearch-project#1526)
Browse files Browse the repository at this point in the history
* add bedrock titan embedding model blueprint

Signed-off-by: Yaliang Wu <[email protected]>

* fix create connector response

Signed-off-by: Yaliang Wu <[email protected]>

* fix step number

Signed-off-by: Yaliang Wu <[email protected]>

---------

Signed-off-by: Yaliang Wu <[email protected]>
  • Loading branch information
ylwu-amzn authored Oct 17, 2023
1 parent 750a29c commit e9e3834
Show file tree
Hide file tree
Showing 2 changed files with 180 additions and 2 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -47,7 +47,8 @@ POST /_plugins/_ml/connectors/_create
}
```

If using the AWS Opensearch Service, you can provide an IAM role arn that allows access to the bedrock service:
If using the AWS Opensearch Service, you can provide an IAM role arn that allows access to the bedrock service.
Refer to this [AWS doc](https://docs.aws.amazon.com/opensearch-service/latest/developerguide/ml-amazon-connector.html)

```json
POST /_plugins/_ml/connectors/_create
Expand Down Expand Up @@ -123,7 +124,7 @@ GET /_plugins/_ml/tasks/SnDo-ooB0wiuGR4SfMNS
POST /_plugins/_ml/models/S3Do-ooB0wiuGR4SfcNv/_deploy
```

6. Test model inference
5. Test model inference

```json
POST /_plugins/_ml/models/S3Do-ooB0wiuGR4SfcNv/_predict
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,177 @@
### Bedrock connector blueprint example

1. Add connector endpoint to trusted URLs:

```json
PUT /_cluster/settings
{
"persistent": {
"plugins.ml_commons.trusted_connector_endpoints_regex": [
"^https://bedrock-runtime\\..*[a-z0-9-]\\.amazonaws\\.com/.*$"
]
}
}
```

2. Create connector for Amazon Bedrock:

If you are using self-managed Opensearch, you should supply AWS credentials:

```json
POST /_plugins/_ml/connectors/_create
{
"name": "Amazon Bedrock Connector: embedding",
"description": "The connector to bedrock Titan embedding model",
"version": 1,
"protocol": "aws_sigv4",
"parameters": {
"region": "<PLEASE ADD YOUR AWS REGION HERE>",
"service_name": "bedrock"
},
"credential": {
"access_key": "<PLEASE ADD YOUR AWS ACCESS KEY HERE>",
"secret_key": "<PLEASE ADD YOUR AWS SECRET KEY HERE>",
"session_token": "<PLEASE ADD YOUR AWS SECURITY TOKEN HERE>"
},
"actions": [
{
"action_type": "predict",
"method": "POST",
"url": "https://bedrock-runtime.us-east-1.amazonaws.com/model/amazon.titan-embed-text-v1/invoke",
"headers": {
"content-type": "application/json",
"x-amz-content-sha256": "required"
},
"request_body": "{ \"inputText\": \"${parameters.inputText}\" }",
"pre_process_function": "\n StringBuilder builder = new StringBuilder();\n builder.append(\"\\\"\");\n String first = params.text_docs[0];\n builder.append(first);\n builder.append(\"\\\"\");\n def parameters = \"{\" +\"\\\"inputText\\\":\" + builder + \"}\";\n return \"{\" +\"\\\"parameters\\\":\" + parameters + \"}\";",
"post_process_function": "\n def name = \"sentence_embedding\";\n def dataType = \"FLOAT32\";\n if (params.embedding == null || params.embedding.length == 0) {\n return params.message;\n }\n def shape = [params.embedding.length];\n def json = \"{\" +\n \"\\\"name\\\":\\\"\" + name + \"\\\",\" +\n \"\\\"data_type\\\":\\\"\" + dataType + \"\\\",\" +\n \"\\\"shape\\\":\" + shape + \",\" +\n \"\\\"data\\\":\" + params.embedding +\n \"}\";\n return json;\n "
}
]
}
```

If using the AWS Opensearch Service, you can provide an IAM role arn that allows access to the bedrock service.
Refer to this [AWS doc](https://docs.aws.amazon.com/opensearch-service/latest/developerguide/ml-amazon-connector.html)

```json
POST /_plugins/_ml/connectors/_create
{
"name": "Amazon Bedrock Connector: embedding",
"description": "The connector to bedrock Titan embedding model",
"version": 1,
"protocol": "aws_sigv4",
"parameters": {
"region": "<PLEASE ADD YOUR AWS REGION HERE>",
"service_name": "bedrock"
},
"credential": {
"roleArn": "<PLEASE ADD YOUR AWS ROLE ARN HERE>"
},
"actions": [
{
"action_type": "predict",
"method": "POST",
"url": "https://bedrock-runtime.us-east-1.amazonaws.com/model/amazon.titan-embed-text-v1/invoke",
"headers": {
"content-type": "application/json",
"x-amz-content-sha256": "required"
},
"request_body": "{ \"inputText\": \"${parameters.inputText}\" }",
"pre_process_function": "\n StringBuilder builder = new StringBuilder();\n builder.append(\"\\\"\");\n String first = params.text_docs[0];\n builder.append(first);\n builder.append(\"\\\"\");\n def parameters = \"{\" +\"\\\"inputText\\\":\" + builder + \"}\";\n return \"{\" +\"\\\"parameters\\\":\" + parameters + \"}\";",
"post_process_function": "\n def name = \"sentence_embedding\";\n def dataType = \"FLOAT32\";\n if (params.embedding == null || params.embedding.length == 0) {\n return params.message;\n }\n def shape = [params.embedding.length];\n def json = \"{\" +\n \"\\\"name\\\":\\\"\" + name + \"\\\",\" +\n \"\\\"data_type\\\":\\\"\" + dataType + \"\\\",\" +\n \"\\\"shape\\\":\" + shape + \",\" +\n \"\\\"data\\\":\" + params.embedding +\n \"}\";\n return json;\n "
}
]
}
```

Response:
```json
{
"connector_id": "nzh9PIsBnGXNcxYpPEcv"
}
```

3. Create model group:

```json
POST /_plugins/_ml/model_groups/_register
{
"name": "remote_model_group",
"description": "This is an example description"
}
```

Response:
```json
{
"model_group_id": "rqR9PIsBQRofe4CScErR",
"status": "CREATED"
}
```

4. Register model to model group & deploy model:

```json
POST /_plugins/_ml/models/_register
{
"name": "Bedrock embedding model",
"function_name": "remote",
"model_group_id": "rqR9PIsBQRofe4CScErR",
"description": "test model",
"connector_id": "nzh9PIsBnGXNcxYpPEcv"
}
```

Response:
```json
{
"task_id": "r6R9PIsBQRofe4CSlUoG",
"status": "CREATED"
}
```
Get model id from task
```json
GET /_plugins/_ml/tasks/r6R9PIsBQRofe4CSlUoG
```
Deploy model, in this demo the model id is `sKR9PIsBQRofe4CSlUov`
```json
POST /_plugins/_ml/models/sKR9PIsBQRofe4CSlUov/_deploy
```

5. Test model inference

```json
POST /_plugins/_ml/models/sKR9PIsBQRofe4CSlUov/_predict
{
"parameters": {
"inputs": "What is the meaning of life?"
}
}
```

Response:
```json
{
"inference_results": [
{
"output": [
{
"name": "sentence_embedding",
"data_type": "FLOAT32",
"shape": [
1536
],
"data": [
0.5390625,
-0.46679688,
-0.125,
...
]
}
],
"status_code": 200
}
]
}
```

0 comments on commit e9e3834

Please sign in to comment.