Skip to content

Commit

Permalink
[TPU] Correctly profile peak memory usage & Upgrade PyTorch XLA (vllm…
Browse files Browse the repository at this point in the history
…-project#9438)

Signed-off-by: Randall Smith <[email protected]>
  • Loading branch information
WoosukKwon authored and rasmith committed Oct 30, 2024
1 parent df22937 commit 7a0cd6e
Show file tree
Hide file tree
Showing 3 changed files with 11 additions and 10 deletions.
2 changes: 1 addition & 1 deletion Dockerfile.tpu
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
ARG NIGHTLY_DATE="20240828"
ARG NIGHTLY_DATE="20241017"
ARG BASE_IMAGE="us-central1-docker.pkg.dev/tpu-pytorch-releases/docker/xla:nightly_3.10_tpuvm_$NIGHTLY_DATE"

FROM $BASE_IMAGE
Expand Down
4 changes: 2 additions & 2 deletions docs/source/getting_started/tpu-installation.rst
Original file line number Diff line number Diff line change
Expand Up @@ -56,8 +56,8 @@ First, install the dependencies:
$ pip uninstall torch torch-xla -y
$ # Install PyTorch and PyTorch XLA.
$ export DATE="20240828"
$ export TORCH_VERSION="2.5.0"
$ export DATE="20241017"
$ export TORCH_VERSION="2.6.0"
$ pip install https://storage.googleapis.com/pytorch-xla-releases/wheels/tpuvm/torch-${TORCH_VERSION}.dev${DATE}-cp310-cp310-linux_x86_64.whl
$ pip install https://storage.googleapis.com/pytorch-xla-releases/wheels/tpuvm/torch_xla-${TORCH_VERSION}.dev${DATE}-cp310-cp310-linux_x86_64.whl
Expand Down
15 changes: 8 additions & 7 deletions vllm/worker/tpu_worker.py
Original file line number Diff line number Diff line change
Expand Up @@ -133,18 +133,19 @@ def determine_num_available_blocks(self) -> Tuple[int, int]:
# Synchronize before measuring the memory usage.
xm.wait_device_ops()

dtype_btyes = get_dtype_size(self.cache_dtype)
block_size = self.cache_config.block_size
block_size_bytes = (dtype_btyes * block_size * num_layers * 2 *
head_size * num_kv_heads)

# Calculate the TPU KV cache size based on profiling.
# Get the maximum amount of memory used by the model weights and
# intermediate activations.
m = xm.get_memory_info(self.device)
total_memory_size = m["bytes_limit"]
profiled = m["peak_bytes_used"] # Weights + intermediate activations.

# Calculate the TPU KV cache size based on profiling.
usable_memory_size = int(total_memory_size *
self.cache_config.gpu_memory_utilization)
profiled = m["bytes_used"] # Weights + intermediate activations.
tpu_kv_cache_bytes = max(usable_memory_size - profiled, 0)
dtype_btyes = get_dtype_size(self.cache_dtype)
block_size_bytes = (dtype_btyes * self.cache_config.block_size *
num_layers * 2 * head_size * num_kv_heads)
num_tpu_blocks = tpu_kv_cache_bytes // block_size_bytes
num_tpu_blocks = (num_tpu_blocks // 8) * 8 # Round down to 8.

Expand Down

0 comments on commit 7a0cd6e

Please sign in to comment.