Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Make all nvtx usage go through safe imports #5424

Merged
merged 8 commits into from
May 30, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
17 changes: 11 additions & 6 deletions python/cuml/datasets/blobs.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,14 +14,19 @@
# limitations under the License.
#


from cuml.datasets.utils import _create_rs_generator
import cuml.internals
from cuml.internals.safe_imports import cpu_only_import
import nvtx
import numbers
import cuml.internals

from collections.abc import Iterable
from cuml.internals.safe_imports import gpu_only_import
from cuml.datasets.utils import _create_rs_generator
from cuml.internals.safe_imports import (
cpu_only_import,
gpu_only_import_from,
null_decorator,
)

nvtx_annotate = gpu_only_import_from("nvtx", "annotate", alt=null_decorator)

cp = gpu_only_import("cupy")
np = cpu_only_import("numpy")
Expand Down Expand Up @@ -83,7 +88,7 @@ def _get_centers(rs, centers, center_box, n_samples, n_features, dtype):
return centers, n_centers


@nvtx.annotate(message="datasets.make_blobs", domain="cuml_python")
@nvtx_annotate(message="datasets.make_blobs", domain="cuml_python")
@cuml.internals.api_return_generic()
def make_blobs(
n_samples=100,
Expand Down
12 changes: 9 additions & 3 deletions python/cuml/datasets/classification.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,14 +13,20 @@
# limitations under the License.
#

import nvtx
from cuml.internals.safe_imports import cpu_only_import
import cuml.internals
from cuml.internals.import_utils import has_sklearn
from cuml.datasets.utils import _create_rs_generator

from cuml.internals.safe_imports import gpu_only_import

from cuml.internals.safe_imports import (
cpu_only_import,
gpu_only_import_from,
null_decorator,
)

nvtx_annotate = gpu_only_import_from("nvtx", "annotate", alt=null_decorator)

cp = gpu_only_import("cupy")
np = cpu_only_import("numpy")

Expand Down Expand Up @@ -50,7 +56,7 @@ def _generate_hypercube(samples, dimensions, rng):
return out


@nvtx.annotate(message="datasets.make_classification", domain="cuml_python")
@nvtx_annotate(message="datasets.make_classification", domain="cuml_python")
@cuml.internals.api_return_generic()
def make_classification(
n_samples=100,
Expand Down
12 changes: 8 additions & 4 deletions python/cuml/datasets/regression.pyx
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
#
# Copyright (c) 2019-2022, NVIDIA CORPORATION.
# Copyright (c) 2019-2023, NVIDIA CORPORATION.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
Expand All @@ -17,9 +17,13 @@
# distutils: language = c++

import typing
import nvtx
from cuml.internals.safe_imports import (
cpu_only_import,
gpu_only_import_from,
null_decorator
)
nvtx_annotate = gpu_only_import_from("nvtx", "annotate", alt=null_decorator)

from cuml.internals.safe_imports import cpu_only_import
np = cpu_only_import('numpy')

import cuml.internals
Expand Down Expand Up @@ -74,7 +78,7 @@ inp_to_dtype = {
}


@nvtx.annotate(message="datasets.make_regression", domain="cuml_python")
@nvtx_annotate(message="datasets.make_regression", domain="cuml_python")
@cuml.internals.api_return_generic()
def make_regression(
n_samples=100,
Expand Down
17 changes: 11 additions & 6 deletions python/cuml/ensemble/randomforestclassifier.pyx
Original file line number Diff line number Diff line change
Expand Up @@ -16,10 +16,15 @@
#

# distutils: language = c++
from cuml.internals.safe_imports import cpu_only_import
from cuml.internals.safe_imports import (
cpu_only_import,
gpu_only_import,
gpu_only_import_from,
null_decorator
)

np = cpu_only_import('numpy')
import nvtx
from cuml.internals.safe_imports import gpu_only_import
nvtx_annotate = gpu_only_import_from("nvtx", "annotate", alt=null_decorator)
rmm = gpu_only_import('rmm')
import warnings

Expand Down Expand Up @@ -413,7 +418,7 @@ class RandomForestClassifier(BaseRandomForestModel,
algo=algo,
fil_sparse_format=fil_sparse_format)

@nvtx.annotate(
@nvtx_annotate(
message="fit RF-Classifier @randomforestclassifier.pyx",
domain="cuml_python")
@generate_docstring(skip_parameters_heading=True,
Expand Down Expand Up @@ -554,7 +559,7 @@ class RandomForestClassifier(BaseRandomForestModel,
del(X_m)
return preds

@nvtx.annotate(
@nvtx_annotate(
message="predict RF-Classifier @randomforestclassifier.pyx",
domain="cuml_python")
@insert_into_docstring(parameters=[('dense', '(n_samples, n_features)')],
Expand Down Expand Up @@ -676,7 +681,7 @@ class RandomForestClassifier(BaseRandomForestModel,

return preds_proba

@nvtx.annotate(
@nvtx_annotate(
message="score RF-Classifier @randomforestclassifier.pyx",
domain="cuml_python")
@insert_into_docstring(parameters=[('dense', '(n_samples, n_features)'),
Expand Down
18 changes: 11 additions & 7 deletions python/cuml/ensemble/randomforestregressor.pyx
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
#
# Copyright (c) 2019-2022, NVIDIA CORPORATION.
# Copyright (c) 2019-2023, NVIDIA CORPORATION.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
Expand All @@ -16,10 +16,14 @@

# distutils: language = c++

from cuml.internals.safe_imports import cpu_only_import
from cuml.internals.safe_imports import (
cpu_only_import,
gpu_only_import,
gpu_only_import_from,
null_decorator
)
np = cpu_only_import('numpy')
import nvtx
from cuml.internals.safe_imports import gpu_only_import
nvtx_annotate = gpu_only_import_from("nvtx", "annotate", alt=null_decorator)
rmm = gpu_only_import('rmm')
import warnings

Expand Down Expand Up @@ -411,7 +415,7 @@ class RandomForestRegressor(BaseRandomForestModel,
algo=algo,
fil_sparse_format=fil_sparse_format)

@nvtx.annotate(
@nvtx_annotate(
message="fit RF-Regressor @randomforestregressor.pyx",
domain="cuml_python")
@generate_docstring()
Expand Down Expand Up @@ -533,7 +537,7 @@ class RandomForestRegressor(BaseRandomForestModel,
del(X_m)
return preds

@nvtx.annotate(
@nvtx_annotate(
message="predict RF-Regressor @randomforestclassifier.pyx",
domain="cuml_python")
@insert_into_docstring(parameters=[('dense', '(n_samples, n_features)')],
Expand Down Expand Up @@ -593,7 +597,7 @@ class RandomForestRegressor(BaseRandomForestModel,

return preds

@nvtx.annotate(
@nvtx_annotate(
message="score RF-Regressor @randomforestclassifier.pyx",
domain="cuml_python")
@insert_into_docstring(parameters=[('dense', '(n_samples, n_features)'),
Expand Down
16 changes: 11 additions & 5 deletions python/cuml/experimental/fil/fil.pyx
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,6 @@
import cupy as cp
import functools
import numpy as np
import nvtx
import pathlib
import treelite.sklearn
import warnings
Expand All @@ -41,6 +40,13 @@ from cuml.internals.global_settings import GlobalSettings
from cuml.internals.mem_type import MemoryType
from pylibraft.common.handle cimport handle_t as raft_handle_t

from cuml.internals.safe_imports import (
cpu_only_import,
gpu_only_import_from,
null_decorator
)
nvtx_annotate = gpu_only_import_from("nvtx", "annotate", alt=null_decorator)

cdef extern from "treelite/c_api.h":
ctypedef void* ModelHandle

Expand Down Expand Up @@ -1047,7 +1053,7 @@ class ForestInference(UniversalBase, CMajorInputTagMixin):
device_id=device_id
)

@nvtx.annotate(
@nvtx_annotate(
message='ForestInference.predict_proba',
domain='cuml_python'
)
Expand Down Expand Up @@ -1095,7 +1101,7 @@ class ForestInference(UniversalBase, CMajorInputTagMixin):
)
return self.forest.predict(X, preds=preds, chunk_size=chunk_size)

@nvtx.annotate(
@nvtx_annotate(
message='ForestInference.predict',
domain='cuml_python'
)
Expand Down Expand Up @@ -1182,7 +1188,7 @@ class ForestInference(UniversalBase, CMajorInputTagMixin):
X, predict_type="default", preds=preds, chunk_size=chunk_size
)

@nvtx.annotate(
@nvtx_annotate(
message='ForestInference.predict_per_tree',
domain='cuml_python'
)
Expand Down Expand Up @@ -1235,7 +1241,7 @@ class ForestInference(UniversalBase, CMajorInputTagMixin):
X, predict_type="per_tree", preds=preds, chunk_size=chunk_size
)

@nvtx.annotate(
@nvtx_annotate(
message='ForestInference.apply',
domain='cuml_python'
)
Expand Down
10 changes: 7 additions & 3 deletions python/cuml/internals/base.pyx
Original file line number Diff line number Diff line change
Expand Up @@ -20,9 +20,13 @@ import os
import inspect
import numbers
from importlib import import_module
from cuml.internals.safe_imports import cpu_only_import
from cuml.internals.safe_imports import (
cpu_only_import,
gpu_only_import_from,
null_decorator
)
np = cpu_only_import('numpy')
import nvtx
nvtx_annotate = gpu_only_import_from("nvtx", "annotate", alt=null_decorator)
import typing

import cuml
Expand Down Expand Up @@ -444,7 +448,7 @@ class Base(TagsMixin,
addr=hex(id(self)))
msg = msg[5:] # remove cuml.
func = getattr(self, func_name)
func = nvtx.annotate(message=msg, domain="cuml_python")(func)
func = nvtx_annotate(message=msg, domain="cuml_python")(func)
setattr(self, func_name, func)


Expand Down
3 changes: 3 additions & 0 deletions python/cuml/internals/safe_imports.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,8 @@

import importlib
import traceback

from contextlib import contextmanager
from cuml.internals.device_support import CPU_ENABLED, GPU_ENABLED
from cuml.internals import logger

Expand All @@ -30,6 +32,7 @@ def return_false(*args, **kwargs):
return False


@contextmanager
def null_decorator(*args, **kwargs):
if len(kwargs) == 0 and len(args) == 1 and callable(args[0]):
return args[0]
Expand Down
13 changes: 8 additions & 5 deletions python/cuml/naive_bayes/naive_bayes.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,10 +27,13 @@
from cuml.common import CumlArray
import math
import warnings
import nvtx

from cuml.internals.safe_imports import gpu_only_import
from cuml.internals.safe_imports import (
gpu_only_import,
gpu_only_import_from,
null_decorator,
)

nvtx_annotate = gpu_only_import_from("nvtx", "annotate", alt=null_decorator)
cp = gpu_only_import("cupy")
cupyx = gpu_only_import("cupyx")

Expand Down Expand Up @@ -386,7 +389,7 @@ def fit(self, X, y, sample_weight=None) -> "GaussianNB":
sample_weight=sample_weight,
)

@nvtx.annotate(
@nvtx_annotate(
message="naive_bayes.GaussianNB._partial_fit", domain="cuml_python"
)
def _partial_fit(
Expand Down Expand Up @@ -816,7 +819,7 @@ def partial_fit(
X, y, sample_weight=sample_weight, _classes=classes
)

@nvtx.annotate(
@nvtx_annotate(
message="naive_bayes._BaseDiscreteNB._partial_fit",
domain="cuml_python",
)
Expand Down
Loading