Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix Leiden refinement phase #3990

Merged
merged 21 commits into from
Nov 20, 2023
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
36 changes: 36 additions & 0 deletions cpp/src/community/detail/common_methods.cuh
Original file line number Diff line number Diff line change
Expand Up @@ -100,6 +100,27 @@ struct reduce_op_t {
}
};

// a workaround for cudaErrorInvalidDeviceFunction error when device lambda is used
naimnv marked this conversation as resolved.
Show resolved Hide resolved
template <typename vertex_t, typename weight_t>
struct count_updown_moves_op_t {
bool up_down{};
__device__ auto operator()(thrust::tuple<vertex_t, thrust::tuple<vertex_t, weight_t>> p) const
{
vertex_t old_cluster = thrust::get<0>(p);
auto new_cluster_gain_pair = thrust::get<1>(p);
vertex_t new_cluster = thrust::get<0>(new_cluster_gain_pair);
weight_t delta_modularity = thrust::get<1>(new_cluster_gain_pair);

auto result_assignment =
(delta_modularity > weight_t{0})
? (((new_cluster > old_cluster) != up_down) ? old_cluster : new_cluster)
: old_cluster;

return (delta_modularity > weight_t{0})
? (((new_cluster > old_cluster) != up_down) ? false : true)
: false;
}
};
// a workaround for cudaErrorInvalidDeviceFunction error when device lambda is used
template <typename vertex_t, typename weight_t>
struct cluster_update_op_t {
Expand Down Expand Up @@ -394,6 +415,21 @@ rmm::device_uvector<vertex_t> update_clustering_by_delta_modularity(
detail::reduce_op_t<vertex_t, weight_t>{},
cugraph::get_dataframe_buffer_begin(output_buffer));

int nr_moves = thrust::count_if(
handle.get_thrust_policy(),
thrust::make_zip_iterator(thrust::make_tuple(
next_clusters_v.begin(), cugraph::get_dataframe_buffer_begin(output_buffer))),
thrust::make_zip_iterator(
thrust::make_tuple(next_clusters_v.end(), cugraph::get_dataframe_buffer_end(output_buffer))),
detail::count_updown_moves_op_t<vertex_t, weight_t>{up_down});

if (multi_gpu) {
nr_moves = host_scalar_allreduce(
handle.get_comms(), nr_moves, raft::comms::op_t::SUM, handle.get_stream());
}

if (nr_moves == 0) { up_down = !up_down; }

thrust::transform(handle.get_thrust_policy(),
next_clusters_v.begin(),
next_clusters_v.end(),
Expand Down
18 changes: 11 additions & 7 deletions cpp/src/community/detail/refine_impl.cuh
Original file line number Diff line number Diff line change
Expand Up @@ -89,8 +89,9 @@ struct leiden_key_aggregated_edge_op_t {

// E(Cr, S-Cr) > ||Cr||*(||S|| -||Cr||)
bool is_dst_leiden_cluster_well_connected =
dst_leiden_cut_to_louvain >
resolution * dst_leiden_volume * (louvain_cluster_volume - dst_leiden_volume);
dst_leiden_cut_to_louvain > resolution * dst_leiden_volume *
(louvain_cluster_volume - dst_leiden_volume) /
total_edge_weight;

// E(v, Cr-v) - ||v||* ||Cr-v||/||V(G)||
// aggregated_weight_to_neighboring_leiden_cluster == E(v, Cr-v)?
Expand All @@ -100,9 +101,9 @@ struct leiden_key_aggregated_edge_op_t {
if ((louvain_of_dst_leiden_cluster == src_louvain_cluster) &&
is_dst_leiden_cluster_well_connected) {
mod_gain = aggregated_weight_to_neighboring_leiden_cluster -
resolution * src_weighted_deg * (dst_leiden_volume - src_weighted_deg) /
total_edge_weight;

resolution * src_weighted_deg * dst_leiden_volume / total_edge_weight;
// NOTE: Disable random moves in refinement phase for now.
naimnv marked this conversation as resolved.
Show resolved Hide resolved
#if 0
naimnv marked this conversation as resolved.
Show resolved Hide resolved
weight_t random_number{0.0};
if (mod_gain > 0.0) {
auto flat_id = uint64_t{threadIdx.x + blockIdx.x * blockDim.x};
Expand All @@ -117,6 +118,8 @@ struct leiden_key_aggregated_edge_op_t {
? __expf(static_cast<float>((2.0 * mod_gain) / (theta * total_edge_weight))) *
random_number
: -1.0;
#endif
mod_gain = mod_gain > 0.0 ? mod_gain : -1.0;
}
}

Expand Down Expand Up @@ -240,11 +243,12 @@ refine_clustering(
wcut_deg_and_cluster_vol_triple_begin,
wcut_deg_and_cluster_vol_triple_end,
singleton_and_connected_flags.begin(),
[resolution] __device__(auto wcut_wdeg_and_louvain_volume) {
[resolution, total_edge_weight] __device__(auto wcut_wdeg_and_louvain_volume) {
auto wcut = thrust::get<0>(wcut_wdeg_and_louvain_volume);
auto wdeg = thrust::get<1>(wcut_wdeg_and_louvain_volume);
auto louvain_volume = thrust::get<2>(wcut_wdeg_and_louvain_volume);
return wcut > (resolution * wdeg * (louvain_volume - wdeg));
return wcut >
(resolution * wdeg * (louvain_volume - wdeg) / total_edge_weight);
});

edge_src_property_t<GraphViewType, weight_t> src_louvain_cluster_weight_cache(handle);
Expand Down
Loading