Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[REVIEW] Add support merging b/w categorical data #8332

Merged
merged 15 commits into from
May 27, 2021
Merged
Show file tree
Hide file tree
Changes from 8 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions python/cudf/cudf/api/__init__.py
Original file line number Diff line number Diff line change
@@ -1 +1,3 @@
# Copyright (c) 2020, NVIDIA CORPORATION.

from cudf.api import types
3 changes: 3 additions & 0 deletions python/cudf/cudf/api/types/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
# Copyright (c) 2021, NVIDIA CORPORATION.

from .categoricals import _union_categoricals
galipremsagar marked this conversation as resolved.
Show resolved Hide resolved
42 changes: 42 additions & 0 deletions python/cudf/cudf/api/types/categoricals.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,42 @@
# Copyright (c) 2021, NVIDIA CORPORATION.

from __future__ import annotations

from typing import List, Union

import cudf

ParentType = Union["cudf.Series", "cudf.Index"]


def _union_categoricals(
galipremsagar marked this conversation as resolved.
Show resolved Hide resolved
to_union: List[Union[cudf.Series, cudf.Index]],
sort_categories: bool = False,
ignore_order: bool = False,
):
"""
This is an internal API which combines categorical data.
"""
# TODO(s) in the order specified :
# 1. The return type needs to be changed
# to cudf.Categorical once it is implemented.
# 2. Make this API public (i.e., to resemble
# pd.api.types.union_categoricals)

if ignore_order:
raise TypeError("ignore_order is not yet implemented")

result_col = cudf.core.column.CategoricalColumn._concat(
[obj._column for obj in to_union]
)
if sort_categories:
sorted_categories = (
cudf.Series(result_col.categories)
.sort_values(ascending=True, ignore_index=True)
galipremsagar marked this conversation as resolved.
Show resolved Hide resolved
._column
)
result_col = result_col.cat().reorder_categories(
new_categories=sorted_categories
)

return cudf.Index(result_col)
10 changes: 10 additions & 0 deletions python/dask_cudf/dask_cudf/backends.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@

from dask.dataframe.categorical import categorical_dtype_dispatch
from dask.dataframe.core import get_parallel_type, make_meta, meta_nonempty
from dask.dataframe.dispatch import union_categoricals_dispatch
from dask.dataframe.methods import (
concat_dispatch,
is_categorical_dtype_dispatch,
Expand Down Expand Up @@ -242,6 +243,15 @@ def is_categorical_dtype_cudf(obj):
return cudf.utils.dtypes.is_categorical_dtype(obj)


@union_categoricals_dispatch.register((cudf.Series, cudf.Index))
def union_categoricals_cudf(
to_union, sort_categories=False, ignore_order=False
):
return cudf.api.types._union_categoricals(
to_union, sort_categories=False, ignore_order=False
)


try:

from dask.dataframe.utils import group_split_dispatch, hash_object_dispatch
Expand Down
31 changes: 31 additions & 0 deletions python/dask_cudf/dask_cudf/tests/test_core.py
Original file line number Diff line number Diff line change
Expand Up @@ -777,3 +777,34 @@ def test_index_map_partitions():
mins_gd = gddf.index.map_partitions(M.min, meta=gddf.index).compute()

dd.assert_eq(mins_pd, mins_gd)


def test_merging_categorical_columns():
df_1 = cudf.DataFrame(
{"id_1": [0, 1, 2, 3], "cat_col": ["a", "b", "f", "f"]}
)

ddf_1 = dgd.from_cudf(df_1, npartitions=2)

ddf_1 = dd.categorical.categorize(ddf_1, columns=["cat_col"])

df_2 = cudf.DataFrame(
{"id_2": [111, 112, 113], "cat_col": ["g", "h", "f"]}
)

ddf_2 = dgd.from_cudf(df_2, npartitions=2)

ddf_2 = dd.categorical.categorize(ddf_2, columns=["cat_col"])
expected = cudf.DataFrame(
{
"id_1": [2, 3],
"cat_col": cudf.Series(
["f", "f"],
dtype=cudf.CategoricalDtype(
categories=["a", "b", "f", "g", "h"], ordered=False
),
),
"id_2": [113, 113],
}
)
dd.assert_eq(ddf_1.merge(ddf_2), expected)