Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

avro reader integration tests #7156

Merged
merged 7 commits into from
Feb 11, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
108 changes: 0 additions & 108 deletions python/cudf/cudf/tests/test_avro.py

This file was deleted.

209 changes: 209 additions & 0 deletions python/cudf/cudf/tests/test_avro_reader_fastavro_integration.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,209 @@
# Copyright (c) 2021, NVIDIA CORPORATION.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

vuule marked this conversation as resolved.
Show resolved Hide resolved
import io

import fastavro
import pytest

import cudf
from cudf.tests.utils import assert_eq


def cudf_from_avro_util(schema, records):

schema = [] if schema is None else fastavro.parse_schema(schema)
buffer = io.BytesIO()
fastavro.writer(buffer, schema, records)
buffer.seek(0)
return cudf.read_avro(buffer)


avro_type_params = [
("boolean", "bool"),
("int", "int32"),
("long", "int64"),
("float", "float32"),
("double", "float64"),
("bytes", "str"),
("string", "str"),
]


@pytest.mark.parametrize("avro_type, expected_dtype", avro_type_params)
@pytest.mark.parametrize("namespace", [None, "root_ns"])
@pytest.mark.parametrize("nullable", [True, False])
def test_can_detect_dtype_from_avro_type(
avro_type, expected_dtype, namespace, nullable
):
avro_type = avro_type if not nullable else ["null", avro_type]

schema = fastavro.parse_schema(
{
"type": "record",
"name": "test",
"namespace": namespace,
"fields": [{"name": "prop", "type": avro_type}],
}
)

actual = cudf_from_avro_util(schema, [])

expected = cudf.DataFrame(
{"prop": cudf.Series(None, None, expected_dtype)}
)

assert_eq(expected, actual)


@pytest.mark.parametrize("avro_type, expected_dtype", avro_type_params)
@pytest.mark.parametrize("namespace", [None, "root_ns"])
@pytest.mark.parametrize("nullable", [True, False])
def test_can_detect_dtype_from_avro_type_nested(
avro_type, expected_dtype, namespace, nullable
):
avro_type = avro_type if not nullable else ["null", avro_type]

schema_leaf = {
"name": "leaf",
"type": "record",
"fields": [{"name": "prop3", "type": avro_type}],
}

schema_child = {
"name": "child",
"type": "record",
"fields": [{"name": "prop2", "type": schema_leaf}],
}

schema_root = {
"name": "root",
"type": "record",
"namespace": namespace,
"fields": [{"name": "prop1", "type": schema_child}],
}

actual = cudf_from_avro_util(schema_root, [])

col_name = "{ns}child.{ns}leaf.prop3".format(
ns="" if namespace is None else namespace + "."
)

expected = cudf.DataFrame(
{col_name: cudf.Series(None, None, expected_dtype)}
)

assert_eq(expected, actual)


@pytest.mark.parametrize(
"avro_type, cudf_type, avro_val, cudf_val",
[
("boolean", "bool", True, True),
("boolean", "bool", False, False),
("int", "int32", 1234, 1234),
("long", "int64", 1234, 1234),
("float", "float32", 12.34, 12.34),
("double", "float64", 12.34, 12.34),
("string", "str", "heyϴ", "heyϴ"),
# ("bytes", "str", "heyϴ", "heyϴ"),
],
)
def test_can_parse_single_value(avro_type, cudf_type, avro_val, cudf_val):

schema_root = {
"name": "root",
"type": "record",
"fields": [{"name": "prop", "type": ["null", avro_type]}],
}

records = [
{"prop": avro_val},
]

actual = cudf_from_avro_util(schema_root, records)

expected = cudf.DataFrame(
{"prop": cudf.Series(data=[cudf_val], dtype=cudf_type)}
)

assert_eq(expected, actual)


@pytest.mark.parametrize("avro_type, cudf_type", avro_type_params)
def test_can_parse_single_null(avro_type, cudf_type):

schema_root = {
"name": "root",
"type": "record",
"fields": [{"name": "prop", "type": ["null", avro_type]}],
}

records = [{"prop": None}]

actual = cudf_from_avro_util(schema_root, records)

expected = cudf.DataFrame(
{"prop": cudf.Series(data=[None], dtype=cudf_type)}
)

assert_eq(expected, actual)


@pytest.mark.parametrize("avro_type, cudf_type", avro_type_params)
def test_can_parse_no_data(avro_type, cudf_type):

schema_root = {
"name": "root",
"type": "record",
"fields": [{"name": "prop", "type": ["null", avro_type]}],
}

records = []

actual = cudf_from_avro_util(schema_root, records)

expected = cudf.DataFrame({"prop": cudf.Series(data=[], dtype=cudf_type)})

assert_eq(expected, actual)


@pytest.mark.xfail(
reason="cudf avro reader is unable to parse zero-field metadata."
)
@pytest.mark.parametrize("avro_type, cudf_type", avro_type_params)
def test_can_parse_no_fields(avro_type, cudf_type):

schema_root = {
"name": "root",
"type": "record",
"fields": [],
}

records = []

actual = cudf_from_avro_util(schema_root, records)

expected = cudf.DataFrame()

assert_eq(expected, actual)


def test_can_parse_no_schema():

schema_root = None
records = []
actual = cudf_from_avro_util(schema_root, records)
expected = cudf.DataFrame()
assert_eq(expected, actual)