Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Docs: Replace all http links with secure https URLs #134

Merged
merged 1 commit into from
May 18, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions ema_workbench/analysis/b_and_w_plotting.py
Original file line number Diff line number Diff line change
Expand Up @@ -70,7 +70,7 @@ def set_ax_lines_bw(ax, colormap, line_style="continuous"):
suitable for black and white viewing.

Derived from and expanded for use in the EMA workbench from:
http://stackoverflow.com/questions/7358118/matplotlib-black-white-colormap-with-dashes-dots-etc
https://stackoverflow.com/questions/7358118/matplotlib-black-white-colormap-with-dashes-dots-etc

Parameters
----------
Expand Down Expand Up @@ -320,7 +320,7 @@ def set_fig_to_bw(fig, style=HATCHING, line_style="continuous"):


derived from and expanded for my use from:
http://stackoverflow.com/questions/7358118/matplotlib-black-white-colormap-with-dashes-dots-etc
https://stackoverflow.com/questions/7358118/matplotlib-black-white-colormap-with-dashes-dots-etc

Parameters
----------
Expand Down
32 changes: 16 additions & 16 deletions ema_workbench/analysis/feature_scoring.py
Original file line number Diff line number Diff line change
Expand Up @@ -180,19 +180,19 @@ def get_rf_feature_scores(
nr_trees : int, optional
nr. of trees in forest (default=250)
max_features : int, optional
see http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
see https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
max_depth : int, optional
see http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
see https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
min_samples : int, optional
see http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
see https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
min_samples_leaf : int, optional
see http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
see https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
bootstrap : bool, optional
see http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
see https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
oob_score : bool, optional
see http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
see https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
random_state : int, optional
see http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
see https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

Returns
-------
Expand Down Expand Up @@ -267,26 +267,26 @@ def get_ex_feature_scores(
max_features : int, float, string or None, optional
by default, it will use number of features/3, following
Jaxa-Rozen & Kwakkel (2018) doi: 10.1016/j.envsoft.2018.06.011
see http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
see https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
max_depth : int, optional
see http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
see https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
min_samples_split : int, optional
see http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
see https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
min_samples_leaf : int, optional
defaults to 1 for N=1000 or lower, from there on
proportional to sqrt of N
(see discussion in Jaxa-Rozen & Kwakkel (2018) doi: 10.1016/j.envsoft.2018.06.011)
see http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
see https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
min_weight_fraction_leaf : float, optional
see http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
see https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
max_leaf_nodes: int or None, optional
see http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
see https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
bootstrap : bool, optional
see http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
see https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
oob_score : bool, optional
see http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
see https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
random_state : int, optional
see http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
see https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html

Returns
-------
Expand Down
10 changes: 5 additions & 5 deletions ema_workbench/analysis/pairs_plotting.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,7 @@ def pairs_lines(
):
"""

Generate a `R style pairs <http://www.stat.psu.edu/~dhunter/R/html/graphics/html/pairs.html>`_
Generate a `R style pairs <https://www.stat.psu.edu/~dhunter/R/html/graphics/html/pairs.html>`_
lines multiplot. It shows the behavior of two outcomes over time against
each other. The origin is denoted with a circle and the end is denoted
with a '+'.
Expand Down Expand Up @@ -168,14 +168,14 @@ def pairs_density(
):
"""

Generate a `R style pairs <http://www.stat.psu.edu/~dhunter/R/html/graphics/html/pairs.html>`_
Generate a `R style pairs <https://www.stat.psu.edu/~dhunter/R/html/graphics/html/pairs.html>`_
hexbin density multiplot. In case of time-series data, the end
states are used.

hexbin makes hexagonal binning plot of x versus y, where x, y are 1-D
sequences of the same length, N. If C is None (the default), this is a
histogram of the number of occurences of the observations at (x[i],y[i]).
For further detail see `matplotlib on hexbin <http://matplotlib.sourceforge.net/api/pyplot_api.html#matplotlib.pyplot.hexbin>`_
For further detail see `matplotlib on hexbin <https://matplotlib.sourceforge.net/api/pyplot_api.html#matplotlib.pyplot.hexbin>`_

Parameters
----------
Expand Down Expand Up @@ -207,7 +207,7 @@ def pairs_density(
controls the gridsize for the hexagonal bining. (default = 50)
cmap : str
color map that is to be used in generating the hexbin. For details
on the available maps, see `pylab <http://matplotlib.sourceforge.net/examples/pylab_examples/show_colormaps.html#pylab-examples-show-colormaps>`_.
on the available maps, see `pylab <https://matplotlib.sourceforge.net/examples/pylab_examples/show_colormaps.html#pylab-examples-show-colormaps>`_.
(Defaults = coolwarm)
filter_scalar: bool, optional
remove the non-time-series outcomes. Defaults to True.
Expand Down Expand Up @@ -418,7 +418,7 @@ def pairs_scatter(
):
"""

Generate a `R style pairs <http://www.stat.psu.edu/~dhunter/R/html/graphics/html/pairs.html>`_
Generate a `R style pairs <https://www.stat.psu.edu/~dhunter/R/html/graphics/html/pairs.html>`_
scatter multiplot. In case of time-series data, the end states are used.

Parameters
Expand Down
2 changes: 1 addition & 1 deletion ema_workbench/analysis/prim.py
Original file line number Diff line number Diff line change
Expand Up @@ -73,7 +73,7 @@ def pca_preprocess(experiments, y, subsets=None, exclude=set()):

Pre-process the data by performing a pca based rotation on it.
This effectively turns the algorithm into PCA-PRIM as described
in `Dalal et al (2013) <http://www.sciencedirect.com/science/article/pii/S1364815213001345>`_
in `Dalal et al (2013) <https://www.sciencedirect.com/science/article/pii/S1364815213001345>`_

Parameters
----------
Expand Down
6 changes: 3 additions & 3 deletions ema_workbench/connectors/excel.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
"""

This module provides a base class that can be used to perform EMA on
Excel models. It relies on `win32com <http://python.net/crew/mhammond/win32/Downloads.html>`_
Excel models. It relies on `win32com <https://python.net/crew/mhammond/win32/Downloads.html>`_

"""

Expand Down Expand Up @@ -38,7 +38,7 @@ class BaseExcelModel(FileModel):
Base class for connecting the EMA workbench to models in Excel. To
automate this connection as much as possible. This implementation relies
on naming cells in Excel. These names can then be used here as names
for the uncertainties and the outcomes. See e.g. `this site <http://spreadsheets.about.com/od/exceltips/qt/named_range.htm>`_
for the uncertainties and the outcomes. See e.g. `this site <https://spreadsheets.about.com/od/exceltips/qt/named_range.htm>`_
for details on naming cells and sets of cells.

The provided implementation here does work with :mod:`parallel_ema`.
Expand Down Expand Up @@ -139,7 +139,7 @@ def run_experiment(self, experiment):
"""
Method for running an instantiated model structures. This
implementation assumes that the names of the uncertainties correspond
to the name of the cells in Excel. See e.g. `this site <http://spreadsheets.about.com/od/exceltips/qt/named_range.htm>`_
to the name of the cells in Excel. See e.g. `this site <https://spreadsheets.about.com/od/exceltips/qt/named_range.htm>`_
for details or use Google and search on 'named range'. One of the
requirements on the names is that they cannot contains spaces.

Expand Down
2 changes: 1 addition & 1 deletion ema_workbench/em_framework/ema_multiprocessing.py
Original file line number Diff line number Diff line change
Expand Up @@ -176,7 +176,7 @@ class LogQueueReader(threading.Thread):
This thread reads the records written by subprocesses and writes them to
the handlers defined in the main process's handlers.

found `online <http://stackoverflow.com/questions/641420/how-should-i-log-while-using-multiprocessing-in-python>`_
found `online <https://stackoverflow.com/questions/641420/how-should-i-log-while-using-multiprocessing-in-python>`_

TODO:: should be generalized with logwatcher used with ipyparallel

Expand Down
2 changes: 1 addition & 1 deletion ema_workbench/examples/excel_example.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@
This file illustrated the use the EMA classes for a model in Excel.

It used the excel file provided by
`A. Sharov <http://home.comcast.net/~sharov/PopEcol/lec10/fullmod.html>`_
`A. Sharov <https://home.comcast.net/~sharov/PopEcol/lec10/fullmod.html>`_

This excel file implements a simple predator prey model.

Expand Down
2 changes: 1 addition & 1 deletion ema_workbench/examples/flu_example.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@
Created on 20 dec. 2010

This file illustrated the use of the workbench for a model
specified in Python itself. The example is based on `Pruyt & Hamarat <http://www.systemdynamics.org/conferences/2010/proceed/papers/P1253.pdf>`_.
specified in Python itself. The example is based on `Pruyt & Hamarat <https://www.systemdynamics.org/conferences/2010/proceed/papers/P1253.pdf>`_.
For comparison, run both this model and the flu_vensim_no_policy_example.py and
compare the results.

Expand Down
2 changes: 1 addition & 1 deletion ema_workbench/examples/lookup_example.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@

This is a simple example of the lookup uncertainty provided for
use in conjuction with vensim models. This example is largely based on
`Eker et al. (2014) <http://onlinelibrary.wiley.com/doi/10.1002/sdr.1518/suppinfo>`_
`Eker et al. (2014) <https://onlinelibrary.wiley.com/doi/10.1002/sdr.1518/suppinfo>`_

@author: sibeleker
@author: jhkwakkel
Expand Down
2 changes: 1 addition & 1 deletion ema_workbench/examples/prim_wcm_example.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@
This example demonstrates the use of PRIM. The dataset was generated
using the world container model

(Tavasszy et al 2011; http://dx.doi.org/10.1016/j.jtrangeo.2011.05.005)
(Tavasszy et al 2011; https://dx.doi.org/10.1016/j.jtrangeo.2011.05.005)


"""
Expand Down
2 changes: 1 addition & 1 deletion ema_workbench/util/ema_exceptions.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
"""

Exceptions and warning used internally by the EMA workbench. In line with
advice given in `PEP 8 <http://www.python.org/dev/peps/pep-0008/>`_.
advice given in `PEP 8 <https://www.python.org/dev/peps/pep-0008/>`_.
"""

# Created on 31 mei 2011
Expand Down