Skip to content

Commit

Permalink
Merge branch 'main' into refactor-SU2-gate
Browse files Browse the repository at this point in the history
  • Loading branch information
anurudhp committed Apr 1, 2024
2 parents edd3f14 + 4dffc97 commit 3a0d092
Show file tree
Hide file tree
Showing 3 changed files with 173 additions and 42 deletions.
64 changes: 47 additions & 17 deletions qualtran/bloqs/generalized_qsp.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -16,9 +16,25 @@
"outputs": [],
"source": [
"from qualtran.bloqs.qubitization_walk_operator_test import get_walk_operator_for_1d_ising_model\n",
"from qualtran.drawing import show_bloq\n",
"from qualtran.bloqs.generalized_qsp import GeneralizedQSP\n",
"from qualtran.drawing import show_bloq"
]
},
{
"cell_type": "markdown",
"id": "6963c30f339d42de",
"metadata": {},
"source": [
"`GeneralizedQSP` implements the Quantum Eigenvalue Transform on a unitary $U$ using QSP. Given a complex GQSP polynomial $P$ (and its complement $Q$), it implements the unitary:\n",
"$$U' = \\begin{bmatrix} P(U) & \\cdot \\\\ Q(U) & \\cdot \\end{bmatrix}$$\n",
"\n",
"Here, the polynomials $P, Q$ must satisfy the following constraint:\n",
"\n",
"from qualtran.bloqs.generalized_qsp import GeneralizedQSP"
"$$\\left| P(e^{i\\theta}) \\right|^2 + \\left| Q(e^{i\\theta}) \\right|^2 = 1 ~~\\text{for every}~ \\theta \\in [0, 2\\pi]$$\n",
"\n",
"A polynomial $P$ is said to be a GQSP polynomial iff it satisfies $\\left| P(e^{i\\theta}) \\right|^2 \\le 1$ for every $\\theta \\in [0, 2\\pi]$. \n",
"\n",
"Reference: https://doi.org/10.48550/arXiv.2308.01501"
]
},
{
Expand All @@ -32,42 +48,56 @@
"show_bloq(U.decompose_bloq())"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "dc7100fd94d58c6b",
"metadata": {},
"outputs": [],
"source": [
"pU = GeneralizedQSP(U, (0.5, 0.5), (-0.5, 0.5))\n",
"show_bloq(pU.decompose_bloq())"
]
},
{
"cell_type": "markdown",
"id": "6963c30f339d42de",
"id": "935a03f7-5843-4b11-abe6-5eb9048c0ab5",
"metadata": {},
"source": [
"`GeneralizedQSP` implements the Quantum Eigenvalue Transform on a unitary $U$ using QSP. Given a complex QSP polynomial $P$ (and its complement $Q$), it implements the unitary:\n",
"$$U' = \\begin{bmatrix} P(U) & \\cdot \\\\ Q(U) & \\cdot \\end{bmatrix}$$\n",
"\n",
"Here, the polynomials $P, Q$ must satisfy the following constraint:\n",
"\n",
"$$\\left\\mid P(e^{i\\theta}) \\right\\mid^2 + \\left\\mid Q(e^{i\\theta}) \\right\\mid^2 = 1 ~~\\text{for every}~ \\theta \\in [0, 2\\pi]$$\n",
"\n",
"\n",
"Reference: https://arxiv.org/abs/2308.01501"
"There is also a method that directly computes $Q$ from $P$:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "dc7100fd94d58c6b",
"id": "78cd3857297f092b",
"metadata": {},
"outputs": [],
"source": [
"pU = GeneralizedQSP(U, (0.5, 0.5))\n",
"pU = GeneralizedQSP.from_qsp_polynomial(U, (0.5, 0, 0.5))\n",
"show_bloq(pU.decompose_bloq())"
]
},
{
"cell_type": "markdown",
"id": "a58f06ba-9287-435d-92a3-256f747024c2",
"metadata": {},
"source": [
"### Negative degree terms\n",
"\n",
"To apply GQSP for a polynomial $P'(z) = z^{-k} P(z)$, we can just pass the polynomial $P$ along with negative power $k$.\n",
"The QSP angle sequence is the same for both, and $P'$ can be achieved by running $(U^\\dagger)^k$ at any point in the circuit."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "78cd3857297f092b",
"id": "ee60e95f-979f-420d-91b1-b6955b9c5a3b",
"metadata": {},
"outputs": [],
"source": [
"pU = GeneralizedQSP(U, (0.5, 0, 0.5))\n",
"show_bloq(pU.decompose_bloq())"
"pU = GeneralizedQSP.from_qsp_polynomial(U, (0.5, 0, 0.5), negative_power=1)\n",
"show_bloq(pU)"
]
}
],
Expand Down
67 changes: 55 additions & 12 deletions qualtran/bloqs/generalized_qsp.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,11 +12,11 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import cached_property
from typing import Sequence, Tuple
from typing import Sequence, Set, Tuple

import cirq
import numpy as np
from attrs import frozen
from attrs import field, frozen
from numpy.polynomial import Polynomial
from numpy.typing import NDArray

Expand Down Expand Up @@ -189,9 +189,11 @@ def safe_angle(x):
class GeneralizedQSP(GateWithRegisters):
r"""Applies a QSP polynomial $P$ to a unitary $U$ to obtain a block-encoding of $P(U)$.
Can optionally provide a negative power offset $k$ (defaults to 0),
to obtain $U^{-k} P(U)$. (Theorem 6)
This gate represents the following unitary:
$$ \begin{bmatrix} P(U) & \cdot \\ \cdot & \cdot \end{bmatrix} $$
$$ \begin{bmatrix} U^{-k} P(U) & \cdot \\ Q(U) & \cdot \end{bmatrix} $$
The polynomial $P$ must satisfy:
$\abs{P(e^{i \theta})}^2 \le 1$ for every $\theta \in \mathbb{R}$.
Expand All @@ -201,22 +203,28 @@ class GeneralizedQSP(GateWithRegisters):
Args:
U: Unitary operation.
P: Co-efficients of a complex polynomial.
negative_power: value of $k$, which effectively applies $z^{-k} P(z)$. defaults to 0.
References:
[Generalized Quantum Signal Processing](https://arxiv.org/abs/2308.01501)
Motlagh and Wiebe. (2023). Theorem 3; Figure 2.
Motlagh and Wiebe. (2023). Theorem 3; Figure 2; Theorem 6.
"""

U: GateWithRegisters
P: Sequence[complex]
P: Tuple[complex, ...] = field(converter=tuple)
Q: Tuple[complex, ...] = field(converter=tuple)
negative_power: int = field(default=0, kw_only=True)

@cached_property
def signature(self) -> Signature:
return Signature([Register('signal', QBit()), *self.U.signature])

@cached_property
def Q(self):
return qsp_complementary_polynomial(self.P)
@classmethod
def from_qsp_polynomial(
cls, U: GateWithRegisters, P: Sequence[complex], *, negative_power: int = 0
) -> 'GeneralizedQSP':
Q = qsp_complementary_polynomial(P)
return GeneralizedQSP(U, P, Q, negative_power=negative_power)

@cached_property
def _qsp_phases(self) -> Tuple[Sequence[float], Sequence[float], float]:
Expand All @@ -234,13 +242,48 @@ def _phi(self) -> Sequence[float]:
def _lambda(self) -> float:
return self._qsp_phases[2]

@cached_property
def signal_rotations(self) -> NDArray[SU2RotationGate]:
return np.array(
[
SU2RotationGate(theta, phi, self._lambda if i == 0 else 0)
for i, (theta, phi) in enumerate(zip(self._theta, self._phi))
]
)

def decompose_from_registers(
self, *, context: cirq.DecompositionContext, signal, **quregs: NDArray[cirq.Qid]
) -> cirq.OP_TREE:
assert len(signal) == 1
signal_qubit = signal[0]

yield SU2RotationGate(self._theta[0], self._phi[0], self._lambda).on(signal_qubit)
for theta, phi in zip(self._theta[1:], self._phi[1:]):
yield self.U.on_registers(**quregs).controlled_by(signal_qubit, control_values=[0])
yield SU2RotationGate(theta, phi, 0).on(signal_qubit)
num_inverse_applications = self.negative_power

yield self.signal_rotations[0].on(signal_qubit)
for signal_rotation in self.signal_rotations[1:]:
if num_inverse_applications > 0:
# apply C-U^\dagger
yield self.U.adjoint().on_registers(**quregs).controlled_by(signal_qubit)
num_inverse_applications -= 1
else:
# apply C[0]-U
yield self.U.on_registers(**quregs).controlled_by(signal_qubit, control_values=[0])
yield signal_rotation.on(signal_qubit)

for _ in range(num_inverse_applications):
yield self.U.adjoint().on_registers(**quregs)

def build_call_graph(self, ssa: 'SympySymbolAllocator') -> Set['BloqCountT']:
degree = len(self.P)

counts = {(rotation, 1) for rotation in self.signal_rotations}

if degree > self.negative_power:
counts.add((self.U.controlled(control_values=[0]), degree - self.negative_power))
elif self.negative_power > degree:
counts.add((self.U.adjoint(), self.negative_power - degree))

if self.negative_power > 0:
counts.add((self.U.adjoint().controlled(), min(degree, self.negative_power)))

return counts
84 changes: 71 additions & 13 deletions qualtran/bloqs/generalized_qsp_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,24 +12,25 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import cached_property
from typing import Sequence, Tuple, Union
from typing import Optional, Sequence, Tuple, Union

import cirq
import numpy as np
import pytest
import sympy
from attrs import define, frozen
from attrs import define, field, frozen
from cirq.testing import random_unitary
from numpy.polynomial import Polynomial
from numpy.typing import NDArray

from qualtran import GateWithRegisters, Signature
from qualtran import Bloq, GateWithRegisters, Signature
from qualtran.bloqs.basic_gates.su2_rotation import SU2RotationGate
from qualtran.bloqs.generalized_qsp import (
GeneralizedQSP,
qsp_complementary_polynomial,
qsp_phase_factors,
)
from qualtran.resource_counting import SympySymbolAllocator


def assert_angles_almost_equal(
Expand Down Expand Up @@ -84,6 +85,7 @@ def test_complementary_polynomial(degree: int):
check_polynomial_pair_on_random_points_on_unit_circle(P, Q, random_state=random_state)


@pytest.mark.slow
@pytest.mark.parametrize("degree", [3, 4, 5, 10, 20, 30, 100])
def test_real_polynomial_has_real_complementary_polynomial(degree: int):
random_state = np.random.RandomState(42)
Expand All @@ -98,12 +100,14 @@ def test_real_polynomial_has_real_complementary_polynomial(degree: int):
@frozen
class RandomGate(GateWithRegisters):
bitsize: int
matrix: Tuple[Tuple[int, ...], ...]
matrix: Tuple[Tuple[complex, ...], ...] = field(
converter=lambda mat: tuple(tuple(row) for row in mat)
)

@staticmethod
def create(bitsize: int, *, random_state=None) -> 'RandomGate':
matrix = random_unitary(2**bitsize, random_state=random_state)
return RandomGate(bitsize, tuple(tuple(x) for x in matrix.tolist()))
return RandomGate(bitsize, matrix)

@property
def signature(self) -> Signature:
Expand All @@ -112,11 +116,21 @@ def signature(self) -> Signature:
def _unitary_(self):
return np.array(self.matrix)

def adjoint(self) -> 'RandomGate':
return RandomGate(self.bitsize, np.conj(self.matrix).T)

def __pow__(self, power):
if power == -1:
return self.adjoint()
return NotImplemented

def evaluate_polynomial_of_matrix(P: Sequence[complex], U: NDArray) -> NDArray:

def evaluate_polynomial_of_matrix(
P: Sequence[complex], U: NDArray, *, negative_power: int = 0
) -> NDArray:
assert U.ndim == 2 and U.shape[0] == U.shape[1]

pow_U = np.identity(U.shape[0], dtype=U.dtype)
pow_U = np.linalg.matrix_power(U.conj().T, negative_power)
result = np.zeros(U.shape, dtype=U.dtype)

for c in P:
Expand All @@ -131,17 +145,30 @@ def assert_matrices_almost_equal(A: NDArray, B: NDArray):
assert np.linalg.norm(A - B) <= 1e-5


def verify_generalized_qsp(U: GateWithRegisters, P: Sequence[complex]):
def verify_generalized_qsp(
U: GateWithRegisters,
P: Sequence[complex],
Q: Optional[Sequence[complex]] = None,
*,
negative_power: int = 0,
):
input_unitary = cirq.unitary(U)
N = input_unitary.shape[0]
gqsp_U = GeneralizedQSP(U, P)
if Q is None:
gqsp_U = GeneralizedQSP.from_qsp_polynomial(U, P, negative_power=negative_power)
else:
gqsp_U = GeneralizedQSP(U, P, Q, negative_power=negative_power)
result_unitary = cirq.unitary(gqsp_U)

expected_top_left = evaluate_polynomial_of_matrix(P, input_unitary)
expected_top_left = evaluate_polynomial_of_matrix(
P, input_unitary, negative_power=negative_power
)
actual_top_left = result_unitary[:N, :N]
assert_matrices_almost_equal(expected_top_left, actual_top_left)

expected_bottom_left = evaluate_polynomial_of_matrix(gqsp_U.Q, input_unitary)
expected_bottom_left = evaluate_polynomial_of_matrix(
gqsp_U.Q, input_unitary, negative_power=negative_power
)
actual_bottom_left = result_unitary[N:, :N]
assert_matrices_almost_equal(expected_bottom_left, actual_bottom_left)

Expand All @@ -161,13 +188,44 @@ def test_generalized_qsp_with_real_poly_on_random_unitaries(bitsize: int, degree
@pytest.mark.slow
@pytest.mark.parametrize("bitsize", [1, 2, 3])
@pytest.mark.parametrize("degree", [2, 3, 4, 5, 50, 100, 120])
def test_generalized_qsp_with_complex_poly_on_random_unitaries(bitsize: int, degree: int):
@pytest.mark.parametrize("negative_power", [0, 1, 2])
def test_generalized_qsp_with_complex_poly_on_random_unitaries(
bitsize: int, degree: int, negative_power: int
):
random_state = np.random.RandomState(42)

for _ in range(10):
U = RandomGate.create(bitsize, random_state=random_state)
P = random_qsp_polynomial(degree, random_state=random_state)
verify_generalized_qsp(U, P)
verify_generalized_qsp(U, P, negative_power=negative_power)


@pytest.mark.parametrize("negative_power", [0, 1, 2])
def test_call_graph(negative_power: int):
random_state = np.random.RandomState(42)

ssa = SympySymbolAllocator()
theta = ssa.new_symbol("theta")
phi = ssa.new_symbol("phi")
lambd = ssa.new_symbol("lambda")
arbitrary_rotation = SU2RotationGate(theta, phi, lambd)

def catch_rotations(bloq: Bloq) -> Bloq:
if isinstance(bloq, SU2RotationGate):
return arbitrary_rotation
return bloq

U = RandomGate.create(1, random_state=random_state)
P = (0.5, 0, 0.5)
gsqp_U = GeneralizedQSP.from_qsp_polynomial(U, P, negative_power=negative_power)

g, sigma = gsqp_U.call_graph(max_depth=1, generalizer=catch_rotations)

expected_counts = {U.controlled(control_values=[0]): 3 - negative_power, arbitrary_rotation: 3}
if negative_power > 0:
expected_counts[U.adjoint().controlled()] = negative_power

assert sigma == expected_counts


@define(slots=False)
Expand Down

0 comments on commit 3a0d092

Please sign in to comment.