Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add CircuitDag class #759

Merged
merged 9 commits into from
Jul 25, 2018
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions cirq/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,7 @@

from cirq.circuits import (
Circuit,
CircuitDag,
DropEmptyMoments,
DropNegligible,
ExpandComposite,
Expand Down
3 changes: 3 additions & 0 deletions cirq/circuits/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,9 @@
from cirq.circuits.circuit import (
Circuit,
)
from cirq.circuits.circuit_dag import (
CircuitDag,
)
from cirq.circuits.drop_empty_moments import (
DropEmptyMoments,
)
Expand Down
154 changes: 154 additions & 0 deletions cirq/circuits/circuit_dag.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,154 @@
# Copyright 2018 The ops Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Any, Callable, Generic, Iterator, TypeVar

import networkx

from cirq import ops, devices
from cirq.circuits import circuit


T = TypeVar('T')

class Unique(Generic[T]):
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Add a docstring explaining why this is needed.

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Done.

"""A wrapper for a value that doesn't compare equal to other instances.

For example: 5 == 5 but Unique(5) != Unique(5).

Unique is used by CircuitDag to wrap operations because nodes in a graph
are considered the same node if they compare equal to each other. X(q0)
in one moment of a Circuit and X(q0) in another moment of the Circuit are
wrapped by Unique(X(q0)) so they are distinct nodes in the graph.
"""
def __init__(self, val: T) -> None:
self.val = val

def __repr__(self):
return 'Unique({}, {!r})'.format(id(self), self.val)


def _disjoint_qubits(op1: ops.Operation, op2: ops.Operation) -> bool:
"""Returns true only if the operations have qubits in common."""
return not set(op1.qubits) & set(op2.qubits)


class CircuitDag(networkx.DiGraph):
"""A representation of a Circuit as a directed acyclic graph.

Nodes of the graph are instances of Unique containing each operation of a
circuit.

Edges of the graph are tuples of nodes. Each edge specifies a required
application order between two operations. The first must be applied before
the second.
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Maybe mention whether the graph is minimalist (e.g. the transitive reduction), maximalist (transitive completion), or just somewhere arbitrary in between.


The graph is maximalist (transitive completion).
"""

disjoint_qubits = staticmethod(_disjoint_qubits)

def __init__(self,
can_reorder: Callable[[ops.Operation, ops.Operation],
bool] = _disjoint_qubits,
incoming_graph_data: Any = None,
device: devices.Device = devices.UnconstrainedDevice
) -> None:
"""Initializes a CircuitDag.

Args:
can_reorder: A predicate that determines if two operations may be
reordered. Graph edges are created for pairs of operations
where this returns False.

The default predicate allows reordering only when the operations
don't share common qubits.
incoming_graph_data: Data in initialize the graph. This can be any
value supported by networkx.DiGraph() e.g. an edge list or
another graph.
device: Hardware that the circuit should be able to run on.
"""
super().__init__(incoming_graph_data)
self.can_reorder = can_reorder
self.device = device

@staticmethod
def make_node(op: ops.Operation) -> Unique:
return Unique(op)

@staticmethod
def from_circuit(circuit: circuit.Circuit,
can_reorder: Callable[[ops.Operation, ops.Operation],
bool] = _disjoint_qubits
) -> 'CircuitDag':
return CircuitDag.from_ops(circuit.all_operations(),
can_reorder=can_reorder,
device=circuit.device)

@staticmethod
def from_ops(*operations: ops.OP_TREE,
can_reorder: Callable[[ops.Operation, ops.Operation],
bool] = _disjoint_qubits,
device: devices.Device = devices.UnconstrainedDevice
) -> 'CircuitDag':
dag = CircuitDag(can_reorder=can_reorder, device=device)
for op in ops.flatten_op_tree(operations):
dag.append(op)
return dag

def append(self, op: ops.Operation) -> None:
new_node = self.make_node(op)
self.add_edges_from([(node, new_node)
for node in self.nodes
if not self.can_reorder(node.val, new_node.val)])
self.add_node(new_node)

def all_operations(self) -> Iterator[ops.Operation]:
if not self.nodes:
return
g = self.copy()

def get_root_node(some_node: Unique[ops.Operation]
) -> Unique[ops.Operation]:
pred = g.pred
while pred[some_node]:
some_node = next(iter(pred[some_node]))
return some_node

def get_first_node() -> Unique[ops.Operation]:
return get_root_node(next(iter(g.nodes)))

def get_next_node(succ: networkx.classes.coreviews.AtlasView
) -> Unique[ops.Operation]:
if succ:
return get_root_node(next(iter(succ)))
else:
return get_first_node()

node = get_first_node()
while True:
yield node.val
succ = g.succ[node]
g.remove_node(node)

if not g.nodes:
return

node = get_next_node(succ)

def to_circuit(self) -> circuit.Circuit:
return circuit.Circuit.from_ops(
self.all_operations(),
strategy=circuit.InsertStrategy.EARLIEST,
device=self.device)
170 changes: 170 additions & 0 deletions cirq/circuits/circuit_dag_test.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,170 @@
# Copyright 2018 The Cirq Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import networkx

import cirq


def test_wrapper_eq():
q0, q1 = cirq.LineQubit.range(2)
eq = cirq.testing.EqualsTester()
eq.add_equality_group(cirq.CircuitDag.make_node(cirq.X(q0)))
eq.add_equality_group(cirq.CircuitDag.make_node(cirq.X(q0)))
eq.add_equality_group(cirq.CircuitDag.make_node(cirq.Y(q0)))
eq.add_equality_group(cirq.CircuitDag.make_node(cirq.X(q1)))


def test_wrapper_repr():
q0 = cirq.LineQubit(0)

node = cirq.CircuitDag.make_node(cirq.X(q0))
assert (repr(node) ==
'Unique(' + str(id(node)) + ', GateOperation(X, (LineQubit(0),)))')


def test_init():
dag = cirq.CircuitDag()
assert networkx.dag.is_directed_acyclic_graph(dag)
assert list(dag.nodes) == []
assert list(dag.edges) == []


def test_append():
q0 = cirq.LineQubit(0)
dag = cirq.CircuitDag()
dag.append(cirq.X(q0))
dag.append(cirq.Y(q0))
print(dag.edges)
assert networkx.dag.is_directed_acyclic_graph(dag)
assert len(dag.nodes) == 2
assert ([(n1.val, n2.val) for n1, n2 in dag.edges] ==
[(cirq.X(q0), cirq.Y(q0))])


def test_two_identical_ops():
q0 = cirq.LineQubit(0)
dag = cirq.CircuitDag()
dag.append(cirq.X(q0))
dag.append(cirq.Y(q0))
dag.append(cirq.X(q0))
assert networkx.dag.is_directed_acyclic_graph(dag)
assert len(dag.nodes) == 3
assert (set((n1.val, n2.val) for n1, n2 in dag.edges) ==
set(((cirq.X(q0), cirq.Y(q0)),
(cirq.X(q0), cirq.X(q0)),
(cirq.Y(q0), cirq.X(q0)))))


def test_from_ops():
q0 = cirq.LineQubit(0)
dag = cirq.CircuitDag.from_ops(
cirq.X(q0),
cirq.Y(q0))
assert networkx.dag.is_directed_acyclic_graph(dag)
assert len(dag.nodes) == 2
assert ([(n1.val, n2.val) for n1, n2 in dag.edges] ==
[(cirq.X(q0), cirq.Y(q0))])


def test_from_circuit():
q0 = cirq.LineQubit(0)
circuit = cirq.Circuit.from_ops(
cirq.X(q0),
cirq.Y(q0))
dag = cirq.CircuitDag.from_circuit(circuit)
assert networkx.dag.is_directed_acyclic_graph(dag)
assert len(dag.nodes) == 2
assert ([(n1.val, n2.val) for n1, n2 in dag.edges] ==
[(cirq.X(q0), cirq.Y(q0))])


def test_from_circuit_with_device():
q0 = cirq.GridQubit(5, 5)
circuit = cirq.Circuit.from_ops(
cirq.X(q0),
cirq.Y(q0),
device=cirq.google.Bristlecone)
dag = cirq.CircuitDag.from_circuit(circuit)
assert networkx.dag.is_directed_acyclic_graph(dag)
assert dag.device == circuit.device
assert len(dag.nodes) == 2
assert ([(n1.val, n2.val) for n1, n2 in dag.edges] ==
[(cirq.X(q0), cirq.Y(q0))])


def test_to_empty_circuit():
circuit = cirq.Circuit()
dag = cirq.CircuitDag.from_circuit(circuit)
assert networkx.dag.is_directed_acyclic_graph(dag)
assert circuit == dag.to_circuit()


def test_to_circuit():
q0 = cirq.LineQubit(0)
circuit = cirq.Circuit.from_ops(
cirq.X(q0),
cirq.Y(q0))
dag = cirq.CircuitDag.from_circuit(circuit)

assert networkx.dag.is_directed_acyclic_graph(dag)
# Only one possible output circuit for this simple case
assert circuit == dag.to_circuit()

cirq.testing.assert_allclose_up_to_global_phase(
circuit.to_unitary_matrix(),
dag.to_circuit().to_unitary_matrix(),
atol=1e-7)


def test_larger_circuit():
q0, q1, q2, q3 = cirq.google.Bristlecone.col(5)[:4]
# This circuit does not have CZ gates on adjacent qubits because the order
# dag.to_circuit() would append them is non-deterministic.
circuit = cirq.Circuit.from_ops(
cirq.X(q0),
cirq.CZ(q1, q2),
cirq.CZ(q0, q1),
cirq.Y(q0),
cirq.Z(q0),
cirq.CZ(q1, q2),
cirq.X(q0),
cirq.Y(q0),
cirq.CZ(q0, q1),
cirq.T(q3),
strategy=cirq.InsertStrategy.EARLIEST,
device=cirq.google.Bristlecone)

dag = cirq.CircuitDag.from_circuit(circuit)

assert networkx.dag.is_directed_acyclic_graph(dag)
assert circuit.device == dag.to_circuit().device
# Operation order within a moment is non-deterministic
# but text diagrams still look the same.
assert (circuit.to_text_diagram() ==
dag.to_circuit().to_text_diagram() ==
"""
(0, 5): ───X───@───Y───Z───X───Y───@───
│ │
(1, 5): ───@───@───@───────────────@───
│ │
(2, 5): ───@───────@───────────────────

(3, 5): ───T───────────────────────────
""".strip())

cirq.testing.assert_allclose_up_to_global_phase(
circuit.to_unitary_matrix(),
dag.to_circuit().to_unitary_matrix(),
atol=1e-7)
2 changes: 1 addition & 1 deletion continuous-integration/mypy.ini
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,6 @@ follow_imports = silent
ignore_missing_imports = true

# 3rd-party libs for which we don't have stubs
[mypy-absl.*,apiclient.*,google.protobuf.*,matplotlib.*,multiprocessing.dummy,numpy.*,oauth2client.*,pytest.*,scipy.*,sortedcontainers.*,setuptools.*,pylatex.*]
[mypy-absl.*,apiclient.*,google.protobuf.*,matplotlib.*,multiprocessing.dummy,numpy.*,oauth2client.*,pytest.*,scipy.*,sortedcontainers.*,setuptools.*,pylatex.*,networkx.*]
follow_imports = silent
ignore_missing_imports = true
1 change: 1 addition & 0 deletions python2.7-runtime-requirements.txt
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
google-api-python-client~=1.6
matplotlib~=2.1
networkx~=2.1
numpy~=1.13
protobuf~=3.5
sortedcontainers~=1.5
Expand Down
1 change: 1 addition & 0 deletions runtime-requirements.txt
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
google-api-python-client~=1.6
matplotlib~=2.2
networkx~=2.1
numpy~=1.14
protobuf~=3.5
requests~=2.18
Expand Down