Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Adds tools for appending randomized measurement bases and processing renyi entropy from bitstring #6664

Merged
Merged
5 changes: 5 additions & 0 deletions cirq-core/cirq/experiments/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -71,3 +71,8 @@
parallel_two_qubit_xeb,
run_rb_and_xeb,
)

from cirq.experiments.measure_in_random_bases import (
append_randomized_measurements,
RandomizedMeasurements,
)
143 changes: 143 additions & 0 deletions cirq-core/cirq/experiments/measure_in_random_bases.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,143 @@
# Copyright 2024 The Cirq Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from collections.abc import Mapping, Sequence
from typing import Any, Literal

import cirq
import numpy as np
import numpy.typing as npt


class RandomizedMeasurements:
def __init__(
self,
num_qubits: int,
num_unitaries: int,
subsystem: Sequence[str | int] | None = None,
qubit_mapping: Mapping[int, str | int] | None = None,
rng: np.random.Generator = np.random.default_rng(),
):
"""Class structure for performing and analyzing a general randomized measurement protocol.
For more details on the randomized measurement toolbox see https://arxiv.org/abs/2203.11374
Args:
num_qubits: Number of qubits in the circuit
num_unitaries: Number of random pre-measurement unitaries
subsystem: The specific subsystem measured in random basis
qubit_mapping: The mapping between the measurement bitstring index and qubit specifier
rng: Random generator
"""
self.num_qubits = num_qubits
self.num_unitaries = num_unitaries
self.subsystem = subsystem

self.qubit_mapping = (
qubit_mapping if qubit_mapping else {i: i for i in range(self.num_qubits)}
)

self.rng = rng

self.pre_measurement_unitaries_list = self._generate_unitaries_list()

def _generate_unitaries_list(self) -> npt.NDArray[Any]:
"""Generates a list of pre-measurement unitaries."""

pauli_strings = self.rng.choice(["X", "Y", "Z"], size=(self.num_unitaries, self.num_qubits))

if self.subsystem is not None:
for i in range(pauli_strings.shape[1]):
if self.qubit_mapping[i] not in self.subsystem:
pauli_strings[:, i] = np.array(["Z"] * self.num_unitaries)

return pauli_strings

def unitaries_to_moment(
self, unitaries: Sequence[Literal["X", "Y", "Z"]], qubits: Sequence[Any]
) -> 'cirq.Moment':
"""Outputs the cirq moment associated with the pre-measurement rotations.
Args:
unitaries: List of pre-measurement unitaries
qubits: List of qubits

Returns: The cirq moment associated with the pre-measurement rotations
"""
op_list: list[cirq.Operation] = []
for idx, pauli in enumerate(unitaries):
op_list.append(_pauli_basis_rotation(pauli).on(qubits[idx]))

return cirq.Moment.from_ops(*op_list)


def _pauli_basis_rotation(basis: Literal["X", "Y", "Z"]) -> 'cirq.Gate':
"""Given a measurement basis returns the associated rotation.
Args:
basis: Measurement basis
Returns: The cirq gate for associated with measurement basis
"""
if basis == "X":
return cirq.Ry(rads=-np.pi / 2)
elif basis == "Y":
return cirq.Rx(rads=np.pi / 2)
elif basis == "Z":
return cirq.I


def append_randomized_measurements(
circuit: 'cirq.AbstractCircuit',
randomized_measurements_generator: RandomizedMeasurements | None = None,
*,
subsystem: tuple[int] | None = None,
qubits: Sequence | None = None,
num_unitaries: int | None = None,
rng: np.random.Generator = np.random.default_rng(),
senecameeks marked this conversation as resolved.
Show resolved Hide resolved
) -> Sequence['cirq.Circuit']:
"""Given an input circuit returns a list of circuits with the pre-measurement unitaries.
If no arguments are specified, it will default to computing the entropy of the entire
circuit.

Args:
circuit: The input circuit
randomized_measurements_generator: RandomizedMeasurements class to use for
generating random measurements.
subsystem: The specific subsystem measured in random basis.
qubits: A sequence of qubits to measure in random basis.
num_unitaries: The number of random pre-measurement unitaries to append.
rng: Random number genergate
Returns:
List of circuits with pre-measurement unitaries and measurements added
"""
qubits = qubits or list(circuit.all_qubits())

if randomized_measurements_generator is None:
randomized_measurements_generator = RandomizedMeasurements(
len(qubits),
num_unitaries if num_unitaries else len(qubits),
subsystem=subsystem,
rng=rng,
)

circuit_list = []

for unitaries in randomized_measurements_generator.pre_measurement_unitaries_list:
pre_measurement_moment = randomized_measurements_generator.unitaries_to_moment(
unitaries, qubits
)

temp_circuit = cirq.Circuit.from_moments(
*circuit.moments, pre_measurement_moment, cirq.measure_each(*qubits)
)

circuit_list.append(temp_circuit)

return circuit_list
119 changes: 119 additions & 0 deletions cirq-core/cirq/experiments/measure_in_random_bases_test.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,119 @@
# Copyright 2024 The Cirq Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import cirq
import cirq.experiments.measure_in_random_bases as mrb


def test_append_randomized_measurements_generates_n_circuits():
# Create a 4-qubit circuit
q0, q1, q2, q3 = cirq.LineQubit.range(4)
circuit = cirq.Circuit([cirq.H(q0), cirq.CNOT(q0, q1), cirq.CNOT(q1, q2), cirq.CNOT(q2, q3)])

# Append randomized measurements
circuits = mrb.append_randomized_measurements(circuit)

assert len(circuits) == 4 # num of qubits


def test_append_randomized_measurements_appends_two_moments_to_end_of_circuit():
# Create a 4-qubit circuit
q0, q1, q2, q3 = cirq.LineQubit.range(4)
circuit = cirq.Circuit([cirq.H(q0), cirq.CNOT(q0, q1), cirq.CNOT(q1, q2), cirq.CNOT(q2, q3)])

num_moments_pre = len(circuit.moments)

# Append randomized measurements
circuits = mrb.append_randomized_measurements(circuit)

for circuit in circuits:
num_moments_post = len(circuit.moments)
assert num_moments_post == num_moments_pre + 2 # 1 random gate and 1 measurement gate


def test_append_randomized_measurements_generates_n_circuits_when_passed_subystem_arg():
# Create a 4-qubit circuit
q0, q1, q2, q3 = cirq.LineQubit.range(4)
circuit = cirq.Circuit([cirq.H(q0), cirq.CNOT(q0, q1), cirq.CNOT(q1, q2), cirq.CNOT(q2, q3)])

# Append randomized measurements to subsystem
circuits = mrb.append_randomized_measurements(circuit, subsystem=(0, 1))

assert len(circuits) == 4


def test_append_randomized_measurements_leaves_qubits_not_in_specified_subsystem_unchanged():
# Create a 4-qubit circuit
q0, q1, q2, q3 = cirq.LineQubit.range(4)
circuit = cirq.Circuit([cirq.H(q0), cirq.CNOT(q0, q1), cirq.CNOT(q1, q2), cirq.CNOT(q2, q3)])

# Append randomized measurements to subsystem
circuits = mrb.append_randomized_measurements(circuit, subsystem=(0, 1))

for circuit in circuits:
# assert latter subsystems were not changed.
assert circuit.operation_at(q2, 4) == cirq.I(q2)
assert circuit.operation_at(q3, 4) == cirq.I(q3)


def test_append_randomized_measurements_generates_circuits_only_for_passed_qubit_mapping():
# Create a 4-qubit circuit
q0, q1, q2, q3 = cirq.LineQubit.range(4)
circuit = cirq.Circuit([cirq.H(q0), cirq.CNOT(q0, q1), cirq.CNOT(q1, q2), cirq.CNOT(q2, q3)])

# Append randomized measurements to subsystem
circuits = mrb.append_randomized_measurements(circuit, qubits=[q0, q1])

assert len(circuits) == 2


def test_append_randomized_measurements_appends_two_moments_to_specified_qubits():
# Create a 4-qubit circuit
q0, q1, q2, q3 = cirq.LineQubit.range(4)
circuit = cirq.Circuit([cirq.H(q0), cirq.CNOT(q0, q1), cirq.CNOT(q1, q2), cirq.CNOT(q2, q3)])
num_moments_pre = len(circuit.moments)

# Append randomized measurements to subsystem
circuits = mrb.append_randomized_measurements(circuit, qubits=[q0, q1])

for circuit in circuits:
num_moments_post = len(circuit.moments)
assert num_moments_post == num_moments_pre + 2 # 1 random gate and 1 measurement gate


def test_append_randomized_measurements_with_num_unitaries_generates_k_circuits():
# Create a 4-qubit circuit
q0, q1, q2, q3 = cirq.LineQubit.range(4)
circuit = cirq.Circuit([cirq.H(q0), cirq.CNOT(q0, q1), cirq.CNOT(q1, q2), cirq.CNOT(q2, q3)])
num_unitaries = 3

# Append randomized measurements to subsystem
circuits = mrb.append_randomized_measurements(circuit, num_unitaries=num_unitaries)

assert len(circuits) == num_unitaries


def test_append_randomized_measurements_with_num_unitaries_appends_two_moments_on_each_circuit():
# Create a 4-qubit circuit
q0, q1, q2, q3 = cirq.LineQubit.range(4)
circuit = cirq.Circuit([cirq.H(q0), cirq.CNOT(q0, q1), cirq.CNOT(q1, q2), cirq.CNOT(q2, q3)])
num_moments_pre = len(circuit.moments)
num_unitaries = 3

# Append randomized measurements to subsystem
circuits = mrb.append_randomized_measurements(circuit, num_unitaries=num_unitaries)

for circuit in circuits:
num_moments_post = len(circuit.moments)
assert num_moments_post == num_moments_pre + 2
1 change: 1 addition & 0 deletions cirq-core/cirq/qis/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -60,3 +60,4 @@
average_error,
decoherence_pauli_error,
)
from cirq.qis.process_renyi_entropy_from_bitstrings import process_entropy_from_bitstrings
senecameeks marked this conversation as resolved.
Show resolved Hide resolved
116 changes: 116 additions & 0 deletions cirq-core/cirq/qis/process_renyi_entropy_from_bitstrings.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,116 @@
# Copyright 2024 The Cirq Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from concurrent.futures import ThreadPoolExecutor
from collections.abc import Sequence
from typing import Any, Optional

import numpy as np
import numpy.typing as npt


def _get_hamming_distance(
bitstring_1: npt.NDArray[np.int8], bitstring_2: npt.NDArray[np.int8]
) -> int:
"""Calculates the Hamming distance between two bitstrings.
Args:
bitstring_1: Bitstring 1
bitstring_2: Bitstring 2
Returns: The Hamming distance
"""
return (bitstring_1 ^ bitstring_2).sum().item()


def _bitstrings_to_probs(
bitstrings: npt.NDArray[np.int8],
) -> tuple[npt.NDArray[np.int8], npt.NDArray[Any]]:
"""Given a list of bitstrings from different measurements returns a probability distribution.
Args:
bitstrings: The bitstring
Returns:
A tuple of bitstrings and their corresponding probabilities.
"""

num_shots = bitstrings.shape[0]
unique_bitstrings, counts = np.unique(bitstrings, return_counts=True, axis=0)
probs = counts / num_shots

return (unique_bitstrings, probs)


def _bitstring_format_helper(
measured_bitstrings: npt.NDArray[np.int8], subsystem: Sequence[int] | None = None
) -> npt.NDArray[np.int8]:
"""Formats the bitstring for analysis based on the selected subsystem.
Args:
measured_bitstrings: Measured bitstring
subsystem: Subsystem of interest
Returns: The bitstring string for the subsystem
"""
if subsystem is None:
return measured_bitstrings

return measured_bitstrings[:, :, subsystem]


def _compute_bitstring_purity(bitstrings: npt.NDArray[np.int8]) -> float:
"""Computes the purity of a bitstring.
senecameeks marked this conversation as resolved.
Show resolved Hide resolved
Args:
bitstrings: The bitstrings measured using the same unitary operators
Returns: The purity of the bitstring
"""

bitstrings, probs = _bitstrings_to_probs(bitstrings)
purity = 0
for idx, s in enumerate(bitstrings):
p = probs[idx]
for j, s_prime in enumerate(bitstrings):
p_prime = bitstrings[j]
senecameeks marked this conversation as resolved.
Show resolved Hide resolved
purity += (-2.0) ** float(-_get_hamming_distance(s, s_prime)) * p * p_prime

return purity * 2 ** (bitstrings.shape[-1])


def process_entropy_from_bitstrings(
senecameeks marked this conversation as resolved.
Show resolved Hide resolved
senecameeks marked this conversation as resolved.
Show resolved Hide resolved
measured_bitstrings: npt.NDArray[np.int8],
subsystem: tuple[int] | None = None,
pool: Optional[ThreadPoolExecutor] = None,
) -> float:
"""Compute the renyi entropy of an array of bitstrings.
Args:
measured_bitstrings: List of numpy arrays.
senecameeks marked this conversation as resolved.
Show resolved Hide resolved
subsystem: Subsystem of interest
pool: ThreadPoolExecutor used to paralelleize the computation.

Returns:
A float indicating the computed entropy.
"""
bitstrings = _bitstring_format_helper(measured_bitstrings, subsystem)
num_shots = bitstrings.shape[1]
num_qubits = bitstrings.shape[-1]

if num_shots == 1:
return 0

if pool is not None:
with pool as executor:
purities = list(executor.map(_compute_bitstring_purity, list(bitstrings)))
purity = np.mean(purities)

else:
purity = np.mean([_compute_bitstring_purity(bitstring) for bitstring in bitstrings])

purity_unbiased = purity * num_shots / (num_shots - 1) - (2**num_qubits) / (num_shots - 1)

return purity_unbiased
Loading