Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Custom-state-representation simulator infra #5417

Merged
merged 14 commits into from
Jun 1, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
91 changes: 91 additions & 0 deletions cirq-core/cirq/contrib/custom_simulators/custom_state_simulator.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,91 @@
# Copyright 2022 The Cirq Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Any, Dict, Generic, Sequence, Type, TYPE_CHECKING

import numpy as np

from cirq import sim
from cirq.sim.simulation_state import TSimulationState

if TYPE_CHECKING:
import cirq


class CustomStateStepResult(sim.StepResultBase[TSimulationState], Generic[TSimulationState]):
"""The step result provided by `CustomStateSimulator.simulate_moment_steps`."""

pass


class CustomStateTrialResult(
sim.SimulationTrialResultBase[TSimulationState], Generic[TSimulationState]
):
"""The trial result provided by `CustomStateSimulator.simulate`."""

pass


class CustomStateSimulator(
sim.SimulatorBase[
CustomStateStepResult[TSimulationState],
CustomStateTrialResult[TSimulationState],
TSimulationState,
],
Generic[TSimulationState],
):
"""A simulator that can be used to simulate custom states."""

def __init__(
self,
state_type: Type[TSimulationState],
*,
noise: 'cirq.NOISE_MODEL_LIKE' = None,
split_untangled_states: bool = False,
):
"""Initializes a CustomStateSimulator.

Args:
state_type: The class that represents the simulation state this simulator should use.
noise: The noise model used by the simulator.
split_untangled_states: True to run the simulation as a product state. This is only
supported if the `state_type` supports it via an implementation of `kron` and
`factor` methods. Otherwise a runtime error will occur during simulation."""
super().__init__(noise=noise, split_untangled_states=split_untangled_states)
self.state_type = state_type

def _create_simulator_trial_result(
self,
params: 'cirq.ParamResolver',
measurements: Dict[str, np.ndarray],
final_simulator_state: 'cirq.SimulationStateBase[TSimulationState]',
) -> 'CustomStateTrialResult[TSimulationState]':
return CustomStateTrialResult(
params, measurements, final_simulator_state=final_simulator_state
)

def _create_step_result(
self, sim_state: 'cirq.SimulationStateBase[TSimulationState]'
) -> 'CustomStateStepResult[TSimulationState]':
return CustomStateStepResult(sim_state)

def _create_partial_simulation_state(
self,
initial_state: Any,
qubits: Sequence['cirq.Qid'],
classical_data: 'cirq.ClassicalDataStore',
) -> TSimulationState:
return self.state_type(
initial_state=initial_state, qubits=qubits, classical_data=classical_data
)
Original file line number Diff line number Diff line change
@@ -0,0 +1,192 @@
# Copyright 2022 The Cirq Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import List, Sequence, Tuple

import numpy as np
import sympy

import cirq
from cirq.contrib.custom_simulators.custom_state_simulator import CustomStateSimulator


class ComputationalBasisState(cirq.qis.QuantumStateRepresentation):
def __init__(self, initial_state: List[int]):
self.basis = initial_state

def copy(self, deep_copy_buffers: bool = True) -> 'ComputationalBasisState':
return ComputationalBasisState(self.basis)

def measure(self, axes: Sequence[int], seed: 'cirq.RANDOM_STATE_OR_SEED_LIKE' = None):
return [self.basis[i] for i in axes]


class ComputationalBasisSimState(cirq.SimulationState[ComputationalBasisState]):
def __init__(self, initial_state, qubits, classical_data):
state = ComputationalBasisState(
cirq.big_endian_int_to_bits(initial_state, bit_count=len(qubits))
)
super().__init__(state=state, qubits=qubits, classical_data=classical_data)

def _act_on_fallback_(self, action, qubits: Sequence[cirq.Qid], allow_decompose: bool = True):
gate = action.gate if isinstance(action, cirq.Operation) else action
if isinstance(gate, cirq.XPowGate):
i = self.qubit_map[qubits[0]]
self._state.basis[i] = int(gate.exponent + self._state.basis[i]) % qubits[0].dimension
return True
pass


def create_test_circuit():
q0, q1 = cirq.LineQid.range(2, dimension=3)
x = cirq.XPowGate(dimension=3)
return cirq.Circuit(
x(q0),
cirq.measure(q0, key='a'),
x(q0).with_classical_controls('a'),
cirq.CircuitOperation(
cirq.FrozenCircuit(x(q1), cirq.measure(q1, key='b')),
repeat_until=cirq.SympyCondition(sympy.Eq(sympy.Symbol('b'), 2)),
use_repetition_ids=False,
),
)


def test_basis_state_simulator():
sim = CustomStateSimulator(ComputationalBasisSimState)
circuit = create_test_circuit()
r = sim.simulate(circuit)
assert r.measurements == {'a': np.array([1]), 'b': np.array([2])}
assert r._final_simulator_state._state.basis == [2, 2]


def test_built_in_states():
# Verify this works for the built-in states too, you just lose the custom step/trial results.
sim = CustomStateSimulator(cirq.StateVectorSimulationState)
circuit = create_test_circuit()
r = sim.simulate(circuit)
assert r.measurements == {'a': np.array([1]), 'b': np.array([2])}
assert np.allclose(
r._final_simulator_state._state._state_vector, [[0, 0, 0], [0, 0, 0], [0, 0, 1]]
)


def test_product_state_mode_built_in_state():
sim = CustomStateSimulator(cirq.StateVectorSimulationState, split_untangled_states=True)
circuit = create_test_circuit()
r = sim.simulate(circuit)
assert r.measurements == {'a': np.array([1]), 'b': np.array([2])}

# Ensure the state is in product-state mode, and it's got three states (q0, q1, phase)
assert isinstance(r._final_simulator_state, cirq.SimulationProductState)
assert len(r._final_simulator_state.sim_states) == 3

assert np.allclose(
r._final_simulator_state.create_merged_state()._state._state_vector,
[[0, 0, 0], [0, 0, 0], [0, 0, 1]],
)


def test_noise():
x = cirq.XPowGate(dimension=3)
sim = CustomStateSimulator(ComputationalBasisSimState, noise=x**2)
circuit = create_test_circuit()
r = sim.simulate(circuit)
assert r.measurements == {'a': np.array([2]), 'b': np.array([2])}
assert r._final_simulator_state._state.basis == [1, 2]


def test_run():
sim = CustomStateSimulator(ComputationalBasisSimState)
circuit = create_test_circuit()
r = sim.run(circuit)
assert np.allclose(r.records['a'], np.array([[1]]))
assert np.allclose(r.records['b'], np.array([[1], [2]]))


def test_parameterized_repetitions():
q = cirq.LineQid(0, dimension=5)
x = cirq.XPowGate(dimension=5)
circuit = cirq.Circuit(
cirq.CircuitOperation(
cirq.FrozenCircuit(x(q), cirq.measure(q, key='a')),
repetitions=sympy.Symbol('r'),
use_repetition_ids=False,
)
)

sim = CustomStateSimulator(ComputationalBasisSimState)
r = sim.run_sweep(circuit, [{'r': i} for i in range(1, 5)])
assert np.allclose(r[0].records['a'], np.array([[1]]))
assert np.allclose(r[1].records['a'], np.array([[1], [2]]))
assert np.allclose(r[2].records['a'], np.array([[1], [2], [3]]))
assert np.allclose(r[3].records['a'], np.array([[1], [2], [3], [4]]))


class ComputationalBasisProductState(cirq.qis.QuantumStateRepresentation):
def __init__(self, initial_state: List[int]):
self.basis = initial_state

def copy(self, deep_copy_buffers: bool = True) -> 'ComputationalBasisProductState':
return ComputationalBasisProductState(self.basis)

def measure(self, axes: Sequence[int], seed: 'cirq.RANDOM_STATE_OR_SEED_LIKE' = None):
return [self.basis[i] for i in axes]

def kron(self, other: 'ComputationalBasisProductState') -> 'ComputationalBasisProductState':
return ComputationalBasisProductState(self.basis + other.basis)

def factor(
self, axes: Sequence[int], *, validate=True, atol=1e-07
) -> Tuple['ComputationalBasisProductState', 'ComputationalBasisProductState']:
extracted = ComputationalBasisProductState([self.basis[i] for i in axes])
remainder = ComputationalBasisProductState(
[self.basis[i] for i in range(len(self.basis)) if i not in axes]
)
return extracted, remainder

def reindex(self, axes: Sequence[int]) -> 'ComputationalBasisProductState':
return ComputationalBasisProductState([self.basis[i] for i in axes])

@property
def supports_factor(self) -> bool:
return True


class ComputationalBasisSimProductState(cirq.SimulationState[ComputationalBasisProductState]):
def __init__(self, initial_state, qubits, classical_data):
state = ComputationalBasisProductState(
cirq.big_endian_int_to_bits(initial_state, bit_count=len(qubits))
)
super().__init__(state=state, qubits=qubits, classical_data=classical_data)

def _act_on_fallback_(self, action, qubits: Sequence[cirq.Qid], allow_decompose: bool = True):
gate = action.gate if isinstance(action, cirq.Operation) else action
if isinstance(gate, cirq.XPowGate):
i = self.qubit_map[qubits[0]]
self._state.basis[i] = int(gate.exponent + self._state.basis[i]) % qubits[0].dimension
return True
pass


def test_product_state_mode():
sim = CustomStateSimulator(ComputationalBasisSimProductState, split_untangled_states=True)
circuit = create_test_circuit()
r = sim.simulate(circuit)
assert r.measurements == {'a': np.array([1]), 'b': np.array([2])}

# Ensure the state is in product-state mode, and it's got three states (q0, q1, phase)
assert isinstance(r._final_simulator_state, cirq.SimulationProductState)
assert len(r._final_simulator_state.sim_states) == 3
assert r._final_simulator_state.create_merged_state()._state.basis == [2, 2]