-
Notifications
You must be signed in to change notification settings - Fork 1k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Custom-state-representation simulator infra (#5417)
Infrastructure for third-parties to easily create custom Cirq-compatible simulators. This PR makes it easy to create custom simulators that support all the advanced Cirq features such as * subcircuits * classical controls (sympy conditions, indexed conditions) * repeat_until loops * noise models * param resolvers * parameterized repetitions * product-state mode As an example in the tests, a ComputationalBasisState simulator supporting all the above can be implemented in under 20 LOC.
- Loading branch information
Showing
2 changed files
with
283 additions
and
0 deletions.
There are no files selected for viewing
91 changes: 91 additions & 0 deletions
91
cirq-core/cirq/contrib/custom_simulators/custom_state_simulator.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,91 @@ | ||
# Copyright 2022 The Cirq Developers | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# https://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from typing import Any, Dict, Generic, Sequence, Type, TYPE_CHECKING | ||
|
||
import numpy as np | ||
|
||
from cirq import sim | ||
from cirq.sim.simulation_state import TSimulationState | ||
|
||
if TYPE_CHECKING: | ||
import cirq | ||
|
||
|
||
class CustomStateStepResult(sim.StepResultBase[TSimulationState], Generic[TSimulationState]): | ||
"""The step result provided by `CustomStateSimulator.simulate_moment_steps`.""" | ||
|
||
pass | ||
|
||
|
||
class CustomStateTrialResult( | ||
sim.SimulationTrialResultBase[TSimulationState], Generic[TSimulationState] | ||
): | ||
"""The trial result provided by `CustomStateSimulator.simulate`.""" | ||
|
||
pass | ||
|
||
|
||
class CustomStateSimulator( | ||
sim.SimulatorBase[ | ||
CustomStateStepResult[TSimulationState], | ||
CustomStateTrialResult[TSimulationState], | ||
TSimulationState, | ||
], | ||
Generic[TSimulationState], | ||
): | ||
"""A simulator that can be used to simulate custom states.""" | ||
|
||
def __init__( | ||
self, | ||
state_type: Type[TSimulationState], | ||
*, | ||
noise: 'cirq.NOISE_MODEL_LIKE' = None, | ||
split_untangled_states: bool = False, | ||
): | ||
"""Initializes a CustomStateSimulator. | ||
Args: | ||
state_type: The class that represents the simulation state this simulator should use. | ||
noise: The noise model used by the simulator. | ||
split_untangled_states: True to run the simulation as a product state. This is only | ||
supported if the `state_type` supports it via an implementation of `kron` and | ||
`factor` methods. Otherwise a runtime error will occur during simulation.""" | ||
super().__init__(noise=noise, split_untangled_states=split_untangled_states) | ||
self.state_type = state_type | ||
|
||
def _create_simulator_trial_result( | ||
self, | ||
params: 'cirq.ParamResolver', | ||
measurements: Dict[str, np.ndarray], | ||
final_simulator_state: 'cirq.SimulationStateBase[TSimulationState]', | ||
) -> 'CustomStateTrialResult[TSimulationState]': | ||
return CustomStateTrialResult( | ||
params, measurements, final_simulator_state=final_simulator_state | ||
) | ||
|
||
def _create_step_result( | ||
self, sim_state: 'cirq.SimulationStateBase[TSimulationState]' | ||
) -> 'CustomStateStepResult[TSimulationState]': | ||
return CustomStateStepResult(sim_state) | ||
|
||
def _create_partial_simulation_state( | ||
self, | ||
initial_state: Any, | ||
qubits: Sequence['cirq.Qid'], | ||
classical_data: 'cirq.ClassicalDataStore', | ||
) -> TSimulationState: | ||
return self.state_type( | ||
initial_state=initial_state, qubits=qubits, classical_data=classical_data | ||
) |
192 changes: 192 additions & 0 deletions
192
cirq-core/cirq/contrib/custom_simulators/custom_state_simulator_test.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,192 @@ | ||
# Copyright 2022 The Cirq Developers | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# https://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from typing import List, Sequence, Tuple | ||
|
||
import numpy as np | ||
import sympy | ||
|
||
import cirq | ||
from cirq.contrib.custom_simulators.custom_state_simulator import CustomStateSimulator | ||
|
||
|
||
class ComputationalBasisState(cirq.qis.QuantumStateRepresentation): | ||
def __init__(self, initial_state: List[int]): | ||
self.basis = initial_state | ||
|
||
def copy(self, deep_copy_buffers: bool = True) -> 'ComputationalBasisState': | ||
return ComputationalBasisState(self.basis) | ||
|
||
def measure(self, axes: Sequence[int], seed: 'cirq.RANDOM_STATE_OR_SEED_LIKE' = None): | ||
return [self.basis[i] for i in axes] | ||
|
||
|
||
class ComputationalBasisSimState(cirq.SimulationState[ComputationalBasisState]): | ||
def __init__(self, initial_state, qubits, classical_data): | ||
state = ComputationalBasisState( | ||
cirq.big_endian_int_to_bits(initial_state, bit_count=len(qubits)) | ||
) | ||
super().__init__(state=state, qubits=qubits, classical_data=classical_data) | ||
|
||
def _act_on_fallback_(self, action, qubits: Sequence[cirq.Qid], allow_decompose: bool = True): | ||
gate = action.gate if isinstance(action, cirq.Operation) else action | ||
if isinstance(gate, cirq.XPowGate): | ||
i = self.qubit_map[qubits[0]] | ||
self._state.basis[i] = int(gate.exponent + self._state.basis[i]) % qubits[0].dimension | ||
return True | ||
pass | ||
|
||
|
||
def create_test_circuit(): | ||
q0, q1 = cirq.LineQid.range(2, dimension=3) | ||
x = cirq.XPowGate(dimension=3) | ||
return cirq.Circuit( | ||
x(q0), | ||
cirq.measure(q0, key='a'), | ||
x(q0).with_classical_controls('a'), | ||
cirq.CircuitOperation( | ||
cirq.FrozenCircuit(x(q1), cirq.measure(q1, key='b')), | ||
repeat_until=cirq.SympyCondition(sympy.Eq(sympy.Symbol('b'), 2)), | ||
use_repetition_ids=False, | ||
), | ||
) | ||
|
||
|
||
def test_basis_state_simulator(): | ||
sim = CustomStateSimulator(ComputationalBasisSimState) | ||
circuit = create_test_circuit() | ||
r = sim.simulate(circuit) | ||
assert r.measurements == {'a': np.array([1]), 'b': np.array([2])} | ||
assert r._final_simulator_state._state.basis == [2, 2] | ||
|
||
|
||
def test_built_in_states(): | ||
# Verify this works for the built-in states too, you just lose the custom step/trial results. | ||
sim = CustomStateSimulator(cirq.StateVectorSimulationState) | ||
circuit = create_test_circuit() | ||
r = sim.simulate(circuit) | ||
assert r.measurements == {'a': np.array([1]), 'b': np.array([2])} | ||
assert np.allclose( | ||
r._final_simulator_state._state._state_vector, [[0, 0, 0], [0, 0, 0], [0, 0, 1]] | ||
) | ||
|
||
|
||
def test_product_state_mode_built_in_state(): | ||
sim = CustomStateSimulator(cirq.StateVectorSimulationState, split_untangled_states=True) | ||
circuit = create_test_circuit() | ||
r = sim.simulate(circuit) | ||
assert r.measurements == {'a': np.array([1]), 'b': np.array([2])} | ||
|
||
# Ensure the state is in product-state mode, and it's got three states (q0, q1, phase) | ||
assert isinstance(r._final_simulator_state, cirq.SimulationProductState) | ||
assert len(r._final_simulator_state.sim_states) == 3 | ||
|
||
assert np.allclose( | ||
r._final_simulator_state.create_merged_state()._state._state_vector, | ||
[[0, 0, 0], [0, 0, 0], [0, 0, 1]], | ||
) | ||
|
||
|
||
def test_noise(): | ||
x = cirq.XPowGate(dimension=3) | ||
sim = CustomStateSimulator(ComputationalBasisSimState, noise=x**2) | ||
circuit = create_test_circuit() | ||
r = sim.simulate(circuit) | ||
assert r.measurements == {'a': np.array([2]), 'b': np.array([2])} | ||
assert r._final_simulator_state._state.basis == [1, 2] | ||
|
||
|
||
def test_run(): | ||
sim = CustomStateSimulator(ComputationalBasisSimState) | ||
circuit = create_test_circuit() | ||
r = sim.run(circuit) | ||
assert np.allclose(r.records['a'], np.array([[1]])) | ||
assert np.allclose(r.records['b'], np.array([[1], [2]])) | ||
|
||
|
||
def test_parameterized_repetitions(): | ||
q = cirq.LineQid(0, dimension=5) | ||
x = cirq.XPowGate(dimension=5) | ||
circuit = cirq.Circuit( | ||
cirq.CircuitOperation( | ||
cirq.FrozenCircuit(x(q), cirq.measure(q, key='a')), | ||
repetitions=sympy.Symbol('r'), | ||
use_repetition_ids=False, | ||
) | ||
) | ||
|
||
sim = CustomStateSimulator(ComputationalBasisSimState) | ||
r = sim.run_sweep(circuit, [{'r': i} for i in range(1, 5)]) | ||
assert np.allclose(r[0].records['a'], np.array([[1]])) | ||
assert np.allclose(r[1].records['a'], np.array([[1], [2]])) | ||
assert np.allclose(r[2].records['a'], np.array([[1], [2], [3]])) | ||
assert np.allclose(r[3].records['a'], np.array([[1], [2], [3], [4]])) | ||
|
||
|
||
class ComputationalBasisProductState(cirq.qis.QuantumStateRepresentation): | ||
def __init__(self, initial_state: List[int]): | ||
self.basis = initial_state | ||
|
||
def copy(self, deep_copy_buffers: bool = True) -> 'ComputationalBasisProductState': | ||
return ComputationalBasisProductState(self.basis) | ||
|
||
def measure(self, axes: Sequence[int], seed: 'cirq.RANDOM_STATE_OR_SEED_LIKE' = None): | ||
return [self.basis[i] for i in axes] | ||
|
||
def kron(self, other: 'ComputationalBasisProductState') -> 'ComputationalBasisProductState': | ||
return ComputationalBasisProductState(self.basis + other.basis) | ||
|
||
def factor( | ||
self, axes: Sequence[int], *, validate=True, atol=1e-07 | ||
) -> Tuple['ComputationalBasisProductState', 'ComputationalBasisProductState']: | ||
extracted = ComputationalBasisProductState([self.basis[i] for i in axes]) | ||
remainder = ComputationalBasisProductState( | ||
[self.basis[i] for i in range(len(self.basis)) if i not in axes] | ||
) | ||
return extracted, remainder | ||
|
||
def reindex(self, axes: Sequence[int]) -> 'ComputationalBasisProductState': | ||
return ComputationalBasisProductState([self.basis[i] for i in axes]) | ||
|
||
@property | ||
def supports_factor(self) -> bool: | ||
return True | ||
|
||
|
||
class ComputationalBasisSimProductState(cirq.SimulationState[ComputationalBasisProductState]): | ||
def __init__(self, initial_state, qubits, classical_data): | ||
state = ComputationalBasisProductState( | ||
cirq.big_endian_int_to_bits(initial_state, bit_count=len(qubits)) | ||
) | ||
super().__init__(state=state, qubits=qubits, classical_data=classical_data) | ||
|
||
def _act_on_fallback_(self, action, qubits: Sequence[cirq.Qid], allow_decompose: bool = True): | ||
gate = action.gate if isinstance(action, cirq.Operation) else action | ||
if isinstance(gate, cirq.XPowGate): | ||
i = self.qubit_map[qubits[0]] | ||
self._state.basis[i] = int(gate.exponent + self._state.basis[i]) % qubits[0].dimension | ||
return True | ||
pass | ||
|
||
|
||
def test_product_state_mode(): | ||
sim = CustomStateSimulator(ComputationalBasisSimProductState, split_untangled_states=True) | ||
circuit = create_test_circuit() | ||
r = sim.simulate(circuit) | ||
assert r.measurements == {'a': np.array([1]), 'b': np.array([2])} | ||
|
||
# Ensure the state is in product-state mode, and it's got three states (q0, q1, phase) | ||
assert isinstance(r._final_simulator_state, cirq.SimulationProductState) | ||
assert len(r._final_simulator_state.sim_states) == 3 | ||
assert r._final_simulator_state.create_merged_state()._state.basis == [2, 2] |