-
Notifications
You must be signed in to change notification settings - Fork 1.1k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4 changed files
with
706 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,266 @@ | ||
# Copyright 2018 The Cirq Developers | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# https://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
"""Linear combination represented as mapping of things to coefficients.""" | ||
|
||
from typing import (Any, Callable, Dict, ItemsView, Iterable, Iterator, | ||
KeysView, Mapping, overload, Tuple, TypeVar, Union, | ||
ValuesView) | ||
|
||
Scalar = Union[complex, float] | ||
TVector = TypeVar('TVector') | ||
|
||
_TDefault = TypeVar('_TDefault') | ||
|
||
|
||
class LinearDict(Dict[TVector, Scalar]): | ||
"""Represents linear combination of things. | ||
LinearDict implements the basic linear algebraic operations of vector | ||
addition and scalar multiplication for linear combinations of abstract | ||
vectors. Keys represent the vectors, values represent their coefficients. | ||
The only requirement on the keys is that they be hashable (i.e. are | ||
immutable and implement __hash__ and __eq__ with equal objects hashing | ||
to equal values). | ||
A consequence of treating keys as opaque is that all relationships between | ||
the keys other than equality are ignored. In particular, keys are allowed | ||
to be linearly dependent. | ||
""" | ||
def __init__(self, terms: Mapping[TVector, Scalar]) -> None: | ||
"""Initializes linear combination from a collection of terms. | ||
Args: | ||
terms: Mapping of abstract vectors to coefficients in the linear | ||
combination being initialized. | ||
""" | ||
super().__init__() | ||
self.update(terms) | ||
|
||
@classmethod | ||
def fromkeys(cls, vectors, coefficient=0): | ||
return LinearDict(dict.fromkeys(vectors, complex(coefficient))) | ||
|
||
def clean(self, *, atol: float=1e-9) -> 'LinearDict': | ||
"""Remove terms with coefficients of absolute value atol or less.""" | ||
negligible = [v for v, c in super().items() if abs(c) <= atol] | ||
for v in negligible: | ||
del self[v] | ||
return self | ||
|
||
def copy(self) -> 'LinearDict': | ||
return LinearDict(super().copy()) | ||
|
||
def keys(self) -> KeysView[TVector]: | ||
snapshot = self.copy().clean(atol=0) | ||
return super(LinearDict, snapshot).keys() | ||
|
||
def values(self) -> ValuesView[Scalar]: | ||
snapshot = self.copy().clean(atol=0) | ||
return super(LinearDict, snapshot).values() | ||
|
||
def items(self) -> ItemsView[TVector, Scalar]: | ||
snapshot = self.copy().clean(atol=0) | ||
return super(LinearDict, snapshot).items() | ||
|
||
# pylint: disable=function-redefined | ||
@overload | ||
def update(self, other: Mapping[TVector, Scalar], **kwargs: Scalar) -> None: | ||
pass | ||
|
||
@overload | ||
def update(self, | ||
other: Iterable[Tuple[TVector, Scalar]], | ||
**kwargs: Scalar) -> None: | ||
pass | ||
|
||
@overload | ||
def update(self, *args: Any, **kwargs: Scalar) -> None: | ||
pass | ||
|
||
def update(self, *args, **kwargs): | ||
super().update(*args, **kwargs) | ||
self.clean(atol=0) | ||
|
||
@overload | ||
def get(self, vector: TVector) -> Scalar: | ||
pass | ||
|
||
@overload | ||
def get(self, vector: TVector, default: _TDefault | ||
) -> Union[Scalar, _TDefault]: | ||
pass | ||
|
||
def get(self, vector, default=0): | ||
if super().get(vector, 0) == 0: | ||
return default | ||
return super().get(vector) | ||
# pylint: enable=function-redefined | ||
|
||
def __contains__(self, vector: Any) -> bool: | ||
return super().__contains__(vector) and super().__getitem__(vector) != 0 | ||
|
||
def __getitem__(self, vector: TVector) -> Scalar: | ||
return super().get(vector, 0) | ||
|
||
def __setitem__(self, vector: TVector, coefficient: Scalar) -> None: | ||
if coefficient != 0: | ||
super().__setitem__(vector, coefficient) | ||
return | ||
if super().__contains__(vector): | ||
super().__delitem__(vector) | ||
|
||
def __iter__(self) -> Iterator[TVector]: | ||
snapshot = self.copy().clean(atol=0) | ||
return super(LinearDict, snapshot).__iter__() | ||
|
||
def __len__(self) -> int: | ||
return len([v for v, c in self.items() if c != 0]) | ||
|
||
def __iadd__(self, other: 'LinearDict') -> 'LinearDict': | ||
for vector, other_coefficient in other.items(): | ||
old_coefficient = super().get(vector, 0) | ||
new_coefficient = old_coefficient + other_coefficient | ||
super().__setitem__(vector, new_coefficient) | ||
self.clean(atol=0) | ||
return self | ||
|
||
def __add__(self, other: 'LinearDict') -> 'LinearDict': | ||
result = self.copy() | ||
result += other | ||
return result | ||
|
||
def __isub__(self, other: 'LinearDict') -> 'LinearDict': | ||
for vector, other_coefficient in other.items(): | ||
old_coefficient = super().get(vector, 0) | ||
new_coefficient = old_coefficient - other_coefficient | ||
super().__setitem__(vector, new_coefficient) | ||
self.clean(atol=0) | ||
return self | ||
|
||
def __sub__(self, other: 'LinearDict') -> 'LinearDict': | ||
result = self.copy() | ||
result -= other | ||
return result | ||
|
||
def __neg__(self) -> 'LinearDict': | ||
return LinearDict({v: -c for v, c in self.items()}) | ||
|
||
def __imul__(self, a: Scalar) -> 'LinearDict': | ||
for vector in self: | ||
self[vector] *= a | ||
self.clean(atol=0) | ||
return self | ||
|
||
def __mul__(self, a: Scalar) -> 'LinearDict': | ||
result = self.copy() | ||
result *= a | ||
return result | ||
|
||
def __rmul__(self, a: Scalar) -> 'LinearDict': | ||
return self.__mul__(a) | ||
|
||
def __truediv__(self, a: Scalar) -> 'LinearDict': | ||
return self.__mul__(1 / a) | ||
|
||
def __bool__(self) -> bool: | ||
return not all(c == 0 for c in self.values()) | ||
|
||
def __eq__(self, other: Any) -> bool: | ||
"""Checks whether two linear combinations are exactly equal. | ||
Presence or absence of terms with coefficients exactly equal to | ||
zero does not affect outcome. | ||
Not appropriate for most practical purposes due to sensitivity to | ||
numerical error in floating point coefficients. Use cirq.approx_eq() | ||
instead. | ||
""" | ||
if not isinstance(other, LinearDict): | ||
return NotImplemented | ||
|
||
all_vs = set(self.keys()) | set(other.keys()) | ||
return all(self[v] == other[v] for v in all_vs) | ||
|
||
def __ne__(self, other: Any) -> bool: | ||
"""Checks whether two linear combinations are not exactly equal. | ||
See __eq__(). | ||
""" | ||
if not isinstance(other, LinearDict): | ||
return NotImplemented | ||
|
||
return not self == other | ||
|
||
def _approx_eq_(self, other: Any, atol: float) -> bool: | ||
"""Checks whether two linear combinations are approximately equal.""" | ||
if not isinstance(other, LinearDict): | ||
return NotImplemented | ||
|
||
all_vs = set(self.keys()) | set(other.keys()) | ||
return all(abs(self[v] - other[v]) < atol for v in all_vs) | ||
|
||
@staticmethod | ||
def _format_coefficient(format_spec: str, coefficient: Scalar) -> str: | ||
coefficient = complex(coefficient) | ||
real_str = '{:{fmt}}'.format(coefficient.real, fmt=format_spec) | ||
imag_str = '{:{fmt}}'.format(coefficient.imag, fmt=format_spec) | ||
if float(real_str) == 0 and float(imag_str) == 0: | ||
return '' | ||
if float(imag_str) == 0: | ||
return real_str | ||
if float(real_str) == 0: | ||
return imag_str + 'j' | ||
if real_str[0] == '-' and imag_str[0] == '-': | ||
return '-({}+{}j)'.format(real_str[1:], imag_str[1:]) | ||
if imag_str[0] in ['+', '-']: | ||
return '({}{}j)'.format(real_str, imag_str) | ||
return '({}+{}j)'.format(real_str, imag_str) | ||
|
||
@staticmethod | ||
def _format_term(format_spec: str, | ||
vector: TVector, | ||
coefficient: Scalar) -> str: | ||
coefficient_str = LinearDict._format_coefficient( | ||
format_spec, coefficient) | ||
if not coefficient_str: | ||
return coefficient_str | ||
result = '{}*{!s}'.format(coefficient_str, vector) | ||
if result[0] in ['+', '-']: | ||
return result | ||
return '+' + result | ||
|
||
def __format__(self, format_spec: str) -> str: | ||
formatted_terms = [self._format_term(format_spec, v, self[v]) | ||
for v in sorted(self.keys())] | ||
s = ''.join(formatted_terms) | ||
if not s: | ||
return '{:{fmt}}'.format(0, fmt=format_spec) | ||
if s[0] == '+': | ||
return s[1:] | ||
return s | ||
|
||
def __repr__(self) -> str: | ||
coefficients = dict(self) | ||
return 'cirq.LinearDict({!r})'.format(coefficients) | ||
|
||
def __str__(self): | ||
return self.__format__('.3f') | ||
|
||
def _repr_pretty_(self, p: Any, cycle: bool) -> None: | ||
if cycle: | ||
p.text('LinearDict(...)') | ||
else: | ||
p.text(str(self)) | ||
|
Oops, something went wrong.