Skip to content

Smart contract library for advanced fixed-point math

License

Notifications You must be signed in to change notification settings

quailbub/FP_Math_SCs

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PRBMath Coverage Status Styled with Prettier Commitizen Friendly license: Unlicense

Smart contract library for advanced fixed-point math that operates with signed 59.18-decimal fixed-point and unsigned 60.18-decimal fixed-point numbers. The name of the number formats stems from the fact that there can be up to 59/60 digits in the integer part and up to 18 decimals in the fractional part. The numbers are bound by the minimum and the maximum values permitted by the Solidity types int256 and uint256.

  • Operates with signed and unsigned denary fixed-point numbers, with 18 trailing decimals
  • Offers advanced math functions like logarithms, exponentials, powers and square roots
  • Gas efficient, but still user-friendly
  • Bakes in overflow-safe multiplication and division
  • Reverts with custom errors instead of reason strings
  • Well-documented via NatSpec comments
  • Thoroughly tested with Hardhat and Waffle

I created this because I wanted a fixed-point math library that is at the same time practical, intuitive and efficient. I looked at ABDKMath64x64, which is fast, but I didn't like that it operates with binary numbers and it limits the precision to int128. I then looked at Fixidity, which operates with denary numbers and has wide precision, but is slow and susceptible to phantom overflow.

Installation

With yarn:

$ yarn add prb-math

Or npm:

npm install prb-math

Usage

PRBMath comes in four flavours: basic signed, typed signed, basic unsigned and typed unsigned.

PRBMathSD59x18.sol

// SPDX-License-Identifier: Unlicense
pragma solidity >=0.8.4;

import "prb-math/contracts/PRBMathSD59x18.sol";

contract SignedConsumer {
  using PRBMathSD59x18 for int256;

  function signedLog2(int256 x) external pure returns (int256 result) {
    result = x.log2();
  }

  /// @notice Calculates x*y÷1e18 while handling possible intermediary overflow.
  /// @dev Try this with x = type(int256).max and y = 5e17.
  function signedMul(int256 x, int256 y) external pure returns (int256 result) {
    result = x.mul(y);
  }

  /// @dev Assuming that 1e18 = 100% and 1e16 = 1%.
  function signedYield(int256 principal, int256 apr) external pure returns (int256 result) {
    result = principal.mul(apr);
  }
}

PRBMathSD59x18Typed.sol

// SPDX-License-Identifier: Unlicense
pragma solidity >=0.8.4;

import "prb-math/contracts/PRBMathSD59x18Typed.sol";

contract SignedConsumerTyped {
  using PRBMathSD59x18Typed for PRBMath.SD59x18;

  function signedLog2(int256 x) external pure returns (int256 result) {
    PRBMath.SD59x18 memory xsd = PRBMath.SD59x18({ value: x });
    result = xsd.log2().value;
  }

  /// @notice Calculates x*y÷1e18 while handling possible intermediary overflow.
  /// @dev Try this with x = type(int256).max and y = 5e17.
  function signedMul(int256 x, int256 y) external pure returns (int256 result) {
    PRBMath.SD59x18 memory xsd = PRBMath.SD59x18({ value: x });
    PRBMath.SD59x18 memory ysd = PRBMath.SD59x18({ value: y });
    result = xsd.mul(ysd).value;
  }

  /// @dev Assuming that 1e18 = 100% and 1e16 = 1%.
  function signedYield(int256 principal, int256 apr) external pure returns (int256 result) {
    PRBMath.SD59x18 memory principalSd = PRBMath.SD59x18({ value: principal });
    PRBMath.SD59x18 memory aprSd = PRBMath.SD59x18({ value: apr });
    result = principalSd.mul(aprSd).value;
  }
}

PRBMathUD60x18.sol

// SPDX-License-Identifier: Unlicense
pragma solidity >=0.8.4;

import "prb-math/contracts/PRBMathUD60x18.sol";

contract UnsignedConsumer {
  using PRBMathUD60x18 for uint256;

  /// @dev Note that "x" must be greater than or equal to 1e18, lest the result would be negative, and negative
  /// numbers are not supported by the unsigned 60.18-decimal fixed-point representation.
  function unsignedLog2(uint256 x) external pure returns (uint256 result) {
    result = x.log2();
  }

  /// @notice Calculates x*y÷1e18 while handling possible intermediary overflow.
  /// @dev Try this with x = type(uint256).max and y = 5e17.
  function unsignedMul(uint256 x, uint256 y) external pure returns (uint256 result) {
    result = x.mul(y);
  }

  /// @dev Assuming that 1e18 = 100% and 1e16 = 1%.
  function unsignedYield(uint256 principal, uint256 apr) external pure returns (uint256 result) {
    result = principal.mul(apr);
  }
}

PRBMathUD60x18Typed.sol

// SPDX-License-Identifier: Unlicense
pragma solidity >=0.8.4;

import "prb-math/contracts/PRBMathUD60x18Typed.sol";

contract UnsignedConsumerTyped {
  using PRBMathUD60x18Typed for PRBMath.UD60x18;

  function unsignedLog2(uint256 x) external pure returns (uint256 result) {
    PRBMath.UD60x18 memory xud = PRBMath.UD60x18({ value: x });
    result = xud.log2().value;
  }

  /// @notice Calculates x*y÷1e18 while handling possible intermediary overflow.
  /// @dev Try this with x = type(uint256).max and y = 5e17.
  function unsignedMul(uint256 x, uint256 y) external pure returns (uint256 result) {
    PRBMath.UD60x18 memory xud = PRBMath.UD60x18({ value: x });
    PRBMath.UD60x18 memory yud = PRBMath.UD60x18({ value: y });
    result = xud.mul(yud).value;
  }

  /// @dev Assuming that 1e18 = 100% and 1e16 = 1%.
  function unsignedYield(uint256 principal, uint256 apr) external pure returns (uint256 result) {
    PRBMath.UD60x18 memory principalUd = PRBMath.UD60x18({ value: principal });
    PRBMath.UD60x18 memory aprUd = PRBMath.UD60x18({ value: apr });
    result = principalUd.mul(aprUd).value;
  }
}

Gas Efficiency

The typeless PRBMath library is faster than ABDKMath for abs, exp, exp2, gm, inv, ln, log2. Conversely, it is slower than ABDKMath for avg, div, mul, powu and sqrt. There are two technical reasons why PRBMath lags behind ABDKMath's mul and div functions:

  1. PRBMath operates with 256-bit word sizes, so it has to account for possible intermediary overflow. ABDKMath operates with 128-bit word sizes.
  2. PRBMath rounds up instead of truncating in certain cases (see listing 6 and text above it in this article), which makes it slightly more precise than ABDKMath but comes at a gas cost.

PRBMath

Based on the v2.0.1 of the library.

SD59x18 Min Max Avg UD60x18 Min Max Avg
abs 68 72 70 n/a n/a n/a n/a
avg 57 57 57 avg 57 57 57
ceil 82 117 101 ceil 78 78 78
div 431 483 451 div 205 205 205
exp 38 2797 2263 exp 1874 2742 2244
exp2 63 2678 2104 exp2 1784 2652 2156
floor 82 117 101 floor 43 43 43
frac 23 23 23 frac 23 23 23
fromInt 83 83 83 fromUint 49 49 49
gm 26 892 690 gm 26 893 691
inv 40 40 40 inv 40 40 40
ln 463 7306 4724 ln 419 6902 3814
log10 104 9074 4337 log10 503 8695 4571
log2 377 7241 4243 log2 330 6825 3426
mul 455 463 459 mul 219 275 247
pow 64 11338 8518 pow 64 10637 6635
powu 293 24745 5681 powu 83 24535 5471
sqrt 140 839 716 sqrt 114 846 710
toInt 23 23 23 toUint 23 23 23

PRBMathTyped

Based on the v2.0.1 of the library.

SD59x18 Min Max Avg UD60x18 Min Max Avg
abs 128 132 130 n/a n/a n/a n/a
add 221 221 221 add 97 97 97
avg 120 120 120 avg 120 120 120
ceil 95 166 141 ceil 132 132 132
div 524 582 546 div 259 259 259
exp 82 3076 2617 exp 2086 2954 2456
exp2 110 2768 2233 exp2 1840 2708 2212
floor 95 171 143 floor 97 97 97
fromInt 118 118 118 fromUint 84 84 84
frac 82 82 82 frac 77 77 77
gm 67 947 741 gm 67 948 743
inv 82 82 82 inv 82 82 82
ln 645 7503 5041 ln 626 7124 4029
log10 182 9287 4337 log10 2414 8912 7280
log2 422 7285 4701 log2 407 6910 4108
mul 538 546 542 mul 273 336 305
pow 115 11824 8471 pow 115 11129 7346
powu 479 25213 5931 powu 132 24426 4207
sqrt 195 918 798 sqrt 153 903 769
sub 218 218 218 sub 98 98 98
toInt 29 29 29 toUint 29 29 29

ABDKMath64x64

Based on v3.0 of the library. See abdk-gas-estimations.

Method Min Max Avg
abs 88 92 90
avg 41 41 41
div 168 168 168
exp 77 3780 2687
exp2 77 3600 2746
gavg 166 875 719
inv 157 157 157
ln 7074 7164 7126
log2 6972 7062 7024
mul 111 111 111
pow 303 4740 1792
sqrt 129 809 699

Contributing

Feel free to dive in! Open an issue, start a discussion or submit a PR.

Pre Requisites

You will need the following software on your machine:

In addition, familiarity with Solidity, TypeScript and Hardhat is requisite.

Set Up

Install the dependencies:

$ yarn install

Then, follow the .env.example file to add the requisite environment variables in the .env file. Now you can start making changes.

Security

While I set a high bar for code quality and test coverage, you shouldn't assume that this project is completely safe to use. The contracts have not been audited by a security researcher.

Caveat Emptor

This is experimental software and is provided on an "as is" and "as available" basis. I do not give any warranties and will not be liable for any loss, direct or indirect through continued use of this codebase.

Contact

If you discover any security issues, please report them via Keybase.

Acknowledgements

License

Unlicense © Paul Razvan Berg

About

Smart contract library for advanced fixed-point math

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Solidity 52.8%
  • TypeScript 46.9%
  • Other 0.3%