Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[proto] Added functional affine_bounding_box op #5597

Merged
merged 8 commits into from
Mar 15, 2022
Merged
Show file tree
Hide file tree
Changes from 5 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
188 changes: 188 additions & 0 deletions test/test_prototype_transforms_functional.py
Original file line number Diff line number Diff line change
@@ -1,14 +1,18 @@
import functools
import itertools
import math

import numpy as np
import pytest
import torch.testing
import torchvision.prototype.transforms.functional as F
from torch import jit
from torch.nn.functional import one_hot
from torchvision.prototype import features
from torchvision.prototype.transforms.functional._meta import convert_bounding_box_format
from torchvision.transforms.functional_tensor import _max_value as get_max_value


make_tensor = functools.partial(torch.testing.make_tensor, device="cpu")


Expand Down Expand Up @@ -205,6 +209,45 @@ def resize_bounding_box():
yield SampleInput(bounding_box, size=size, image_size=bounding_box.image_size)


@register_kernel_info_from_sample_inputs_fn
def affine_image_tensor():
for image, angle, translate, scale, shear in itertools.product(
make_images(extra_dims=()),
[-87, 15, 90], # angle
[5, -5], # translate
[0.77, 1.27], # scale
[0, 12], # shear
):
yield SampleInput(
image,
angle=angle,
translate=(translate, translate),
scale=scale,
shear=(shear, shear),
interpolation=F.InterpolationMode.NEAREST,
)


@register_kernel_info_from_sample_inputs_fn
def affine_bounding_box():
for bounding_box, angle, translate, scale, shear in itertools.product(
make_bounding_boxes(),
[-87, 15, 90], # angle
[5, -5], # translate
[0.77, 1.27], # scale
[0, 12], # shear
):
yield SampleInput(
bounding_box,
format=bounding_box.format,
image_size=bounding_box.image_size,
angle=angle,
translate=(translate, translate),
scale=scale,
shear=(shear, shear),
)


@pytest.mark.parametrize(
"kernel",
[
Expand Down Expand Up @@ -233,3 +276,148 @@ def test_eager_vs_scripted(functional_info, sample_input):
scripted = jit.script(functional_info.functional)(*sample_input.args, **sample_input.kwargs)

torch.testing.assert_close(eager, scripted)


@pytest.mark.parametrize("angle", range(-90, 90, 36))
@pytest.mark.parametrize("translate", range(-10, 10, 5))
@pytest.mark.parametrize("scale", [0.77, 1.0, 1.27])
@pytest.mark.parametrize("shear", range(-15, 15, 5))
@pytest.mark.parametrize("center", [None, (12, 14)])
def test_correctness_affine_bounding_box(angle, translate, scale, shear, center):
def _compute_expected_bbox(bbox, angle_, translate_, scale_, shear_, center_):
rot = math.radians(angle_)
cx, cy = center_
tx, ty = translate_
sx, sy = [math.radians(sh_) for sh_ in shear_]

c_matrix = np.array([[1, 0, cx], [0, 1, cy], [0, 0, 1]])
t_matrix = np.array([[1, 0, tx], [0, 1, ty], [0, 0, 1]])
c_matrix_inv = np.linalg.inv(c_matrix)
rs_matrix = np.array(
[
[scale_ * math.cos(rot), -scale_ * math.sin(rot), 0],
[scale_ * math.sin(rot), scale_ * math.cos(rot), 0],
[0, 0, 1],
]
)
shear_x_matrix = np.array([[1, -math.tan(sx), 0], [0, 1, 0], [0, 0, 1]])
shear_y_matrix = np.array([[1, 0, 0], [-math.tan(sy), 1, 0], [0, 0, 1]])
rss_matrix = np.matmul(rs_matrix, np.matmul(shear_y_matrix, shear_x_matrix))
true_matrix = np.matmul(t_matrix, np.matmul(c_matrix, np.matmul(rss_matrix, c_matrix_inv)))
true_matrix = true_matrix[:2, :]

bbox_xyxy = convert_bounding_box_format(
bbox, old_format=bbox.format, new_format=features.BoundingBoxFormat.XYXY
)
points = np.array(
[
[bbox_xyxy[0].item(), bbox_xyxy[1].item(), 1.0],
[bbox_xyxy[2].item(), bbox_xyxy[1].item(), 1.0],
[bbox_xyxy[0].item(), bbox_xyxy[3].item(), 1.0],
[bbox_xyxy[2].item(), bbox_xyxy[3].item(), 1.0],
]
)
transformed_points = np.matmul(points, true_matrix.T)
out_bbox = [
np.min(transformed_points[:, 0]),
np.min(transformed_points[:, 1]),
np.max(transformed_points[:, 0]),
np.max(transformed_points[:, 1]),
]
out_bbox = features.BoundingBox(
out_bbox, format=features.BoundingBoxFormat.XYXY, image_size=(32, 32), dtype=torch.float32
)
out_bbox = convert_bounding_box_format(
out_bbox, old_format=features.BoundingBoxFormat.XYXY, new_format=bbox.format
)
return out_bbox

image_size = (32, 32)

for bboxes in make_bounding_boxes(
image_sizes=[
image_size,
],
extra_dims=((4,),),
):
output_bboxes = F.affine_bounding_box(
bboxes,
bboxes.format,
image_size=image_size,
angle=angle,
translate=(translate, translate),
scale=scale,
shear=(shear, shear),
center=center,
)
if center is None:
center = [s // 2 for s in image_size]

bboxes_format = bboxes.format
bboxes_image_size = bboxes.image_size
if bboxes.ndim < 2:
bboxes = [
bboxes,
]

expected_bboxes = []
for bbox in bboxes:
bbox = features.BoundingBox(bbox, format=bboxes_format, image_size=bboxes_image_size)
expected_bboxes.append(
_compute_expected_bbox(bbox, angle, (translate, translate), scale, (shear, shear), center)
)
expected_bboxes = torch.stack(expected_bboxes)
if expected_bboxes.shape[0] < 2:
expected_bboxes = expected_bboxes.squeeze(0)

torch.testing.assert_close(output_bboxes, expected_bboxes)


def test_correctness_affine_bounding_box_on_fixed_input():
# Check transformation against known expected output
image_size = (64, 64)
# xyxy format
in_boxes = [
[20, 25, 35, 45],
[50, 5, 70, 22],
[image_size[1] // 2 - 10, image_size[0] // 2 - 10, image_size[1] // 2 + 10, image_size[0] // 2 + 10],
[1, 1, 5, 5],
]
in_boxes = features.BoundingBox(
in_boxes, format=features.BoundingBoxFormat.XYXY, image_size=image_size, dtype=torch.float64
)
# Tested parameters
angle = 63
scale = 0.89
dx = 0.12
dy = 0.23

# Expected bboxes computed using albumentations:
# from albumentations.augmentations.geometric.functional import bbox_shift_scale_rotate
# from albumentations.augmentations.geometric.functional import normalize_bbox, denormalize_bbox
# expected_bboxes = []
# for in_box in in_boxes:
# n_in_box = normalize_bbox(in_box, *image_size)
# n_out_box = bbox_shift_scale_rotate(n_in_box, -angle, scale, dx, dy, *image_size)
# out_box = denormalize_bbox(n_out_box, *image_size)
# expected_bboxes.append(out_box)
expected_bboxes = [
(24.522435977922218, 34.375689508290854, 46.443125279998114, 54.3516575015695),
(54.88288587110401, 50.08453280875634, 76.44484547743795, 72.81332520036864),
(27.709526487041554, 34.74952648704156, 51.650473512958435, 58.69047351295844),
(48.56528888843238, 9.611532109828834, 53.35347829361575, 14.39972151501221),
]

output_boxes = F.affine_bounding_box(
in_boxes,
in_boxes.format,
in_boxes.image_size,
angle,
(dx * image_size[1], dy * image_size[0]),
scale,
shear=(0, 0),
)

assert len(output_boxes) == len(expected_bboxes)
for a_out_box, out_box in zip(expected_bboxes, output_boxes):
np.testing.assert_allclose(out_box.cpu().numpy(), a_out_box)
1 change: 1 addition & 0 deletions torchvision/prototype/transforms/functional/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -48,6 +48,7 @@
center_crop_image_pil,
resized_crop_image_tensor,
resized_crop_image_pil,
affine_bounding_box,
affine_image_tensor,
affine_image_pil,
rotate_image_tensor,
Expand Down
51 changes: 51 additions & 0 deletions torchvision/prototype/transforms/functional/_geometry.py
Original file line number Diff line number Diff line change
Expand Up @@ -174,6 +174,57 @@ def affine_image_pil(
return _FP.affine(img, matrix, interpolation=pil_modes_mapping[interpolation], fill=fill)


def affine_bounding_box(
bounding_box: torch.Tensor,
format: features.BoundingBoxFormat,
image_size: Tuple[int, int],
angle: float,
translate: List[float],
scale: float,
shear: List[float],
center: Optional[List[float]] = None,
) -> torch.Tensor:
original_shape = bounding_box.shape
bounding_box = convert_bounding_box_format(
bounding_box, old_format=format, new_format=features.BoundingBoxFormat.XYXY
).view(-1, 4)

dtype = bounding_box.dtype if torch.is_floating_point(bounding_box) else torch.float32
device = bounding_box.device

if center is None:
height, width = image_size
center_f = [width * 0.5, height * 0.5]
else:
center_f = [float(c) for c in center]

translate_f = [float(t) for t in translate]
affine_matrix = torch.tensor(
_get_inverse_affine_matrix(center_f, angle, translate_f, scale, shear, inverted=False),
datumbox marked this conversation as resolved.
Show resolved Hide resolved
dtype=dtype,
device=device,
).view(2, 3)
# 1) Let's transform bboxes into a tensor of 4 points (top-left, top-right, bottom-left, bottom-right corners).
# Tensor of points has shape (N * 4, 3), where N is the number of bboxes
# Single point structure is similar to
# [(xmin, ymin, 1), (xmax, ymin, 1), (xmax, ymax, 1), (xmin, ymax, 1)]
points = bounding_box[:, [[0, 1], [2, 1], [2, 3], [0, 3]]].view(-1, 2)
points = torch.cat([points, torch.ones(points.shape[0], 1)], dim=-1)
# 2) Now let's transform the points using affine matrix
transformed_points = torch.matmul(points, affine_matrix.T)
# 3) Reshape transformed points to [N boxes, 4 points, x/y coords]
# and compute bounding box from 4 transformed points:
transformed_points = transformed_points.view(-1, 4, 2)
out_bbox_mins, _ = torch.min(transformed_points, dim=1)
out_bbox_maxs, _ = torch.max(transformed_points, dim=1)
out_bboxes = torch.cat([out_bbox_mins, out_bbox_maxs], dim=1)
datumbox marked this conversation as resolved.
Show resolved Hide resolved
# out_bboxes should be of shape [N boxes, 4]

return convert_bounding_box_format(
out_bboxes, old_format=features.BoundingBoxFormat.XYXY, new_format=format, copy=False
).view(original_shape)


def rotate_image_tensor(
img: torch.Tensor,
angle: float,
Expand Down
38 changes: 21 additions & 17 deletions torchvision/transforms/functional.py
Original file line number Diff line number Diff line change
Expand Up @@ -931,11 +931,7 @@ def adjust_gamma(img: Tensor, gamma: float, gain: float = 1) -> Tensor:


def _get_inverse_affine_matrix(
center: List[float],
angle: float,
translate: List[float],
scale: float,
shear: List[float],
center: List[float], angle: float, translate: List[float], scale: float, shear: List[float], inverted: bool = True
) -> List[float]:
# Helper method to compute inverse matrix for affine transformation

Expand Down Expand Up @@ -970,18 +966,26 @@ def _get_inverse_affine_matrix(
c = math.sin(rot - sy) / math.cos(sy)
d = -math.sin(rot - sy) * math.tan(sx) / math.cos(sy) + math.cos(rot)

# Inverted rotation matrix with scale and shear
# det([[a, b], [c, d]]) == 1, since det(rotation) = 1 and det(shear) = 1
matrix = [d, -b, 0.0, -c, a, 0.0]
matrix = [x / scale for x in matrix]

# Apply inverse of translation and of center translation: RSS^-1 * C^-1 * T^-1
matrix[2] += matrix[0] * (-cx - tx) + matrix[1] * (-cy - ty)
matrix[5] += matrix[3] * (-cx - tx) + matrix[4] * (-cy - ty)

# Apply center translation: C * RSS^-1 * C^-1 * T^-1
matrix[2] += cx
matrix[5] += cy
if inverted:
# Inverted rotation matrix with scale and shear
# det([[a, b], [c, d]]) == 1, since det(rotation) = 1 and det(shear) = 1
matrix = [d, -b, 0.0, -c, a, 0.0]
matrix = [x / scale for x in matrix]
# Apply inverse of translation and of center translation: RSS^-1 * C^-1 * T^-1
matrix[2] += matrix[0] * (-cx - tx) + matrix[1] * (-cy - ty)
matrix[5] += matrix[3] * (-cx - tx) + matrix[4] * (-cy - ty)
# Apply center translation: C * RSS^-1 * C^-1 * T^-1
matrix[2] += cx
matrix[5] += cy
else:
matrix = [a, b, 0.0, c, d, 0.0]
matrix = [x * scale for x in matrix]
# Apply inverse of center translation: RSS * C^-1
matrix[2] += matrix[0] * (-cx) + matrix[1] * (-cy)
matrix[5] += matrix[3] * (-cx) + matrix[4] * (-cy)
# Apply translation and center : T * C * RSS * C^-1
matrix[2] += cx + tx
matrix[5] += cy + ty

return matrix

Expand Down