-
Notifications
You must be signed in to change notification settings - Fork 102
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Browse files
Browse the repository at this point in the history
* prelu forward rule * prelu backward rule
- Loading branch information
Samantha Andow
authored
Apr 6, 2022
1 parent
b504e6d
commit d8152ab
Showing
3 changed files
with
181 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,181 @@ | ||
// Copyright (c) Facebook, Inc. and its affiliates. | ||
// All rights reserved. | ||
// | ||
// This source code is licensed under the BSD-style license found in the | ||
// LICENSE file in the root directory of this source tree. | ||
|
||
#include <functorch/csrc/BatchRulesHelper.h> | ||
#include <functorch/csrc/PlumbingHelper.h> | ||
#include <ATen/Operators.h> | ||
|
||
// NB: most activation functions fit pointwise unary or binary rules. | ||
// These are only the ones that have special batch rules to help with organization | ||
namespace at { namespace functorch { | ||
std::tuple<Tensor,optional<int64_t>> prelu_batch_rule( | ||
const Tensor& input, optional<int64_t> input_bdim, | ||
const Tensor& weight, optional<int64_t> weight_bdim) { | ||
if (!weight_bdim && weight.dim() == 0) { | ||
return std::make_tuple(at::prelu(input, weight), input_bdim); | ||
} | ||
|
||
const auto input_ = moveBatchDimToFront(input, input_bdim); | ||
auto weight_flatten = moveBatchDimToFront(weight, weight_bdim); | ||
|
||
if (weight_flatten.dim() > 1) { | ||
// for an input [N, C, ...] | ||
// weight can be a non-vector but the total number of elements must be the same as C | ||
weight_flatten = at::flatten(weight_flatten, weight_bdim.has_value() ? 1 : 0, -1); | ||
} | ||
|
||
const int64_t input_logical_rank = rankWithoutBatchDim(input, input_bdim); | ||
VmapDimVector new_shape(weight_flatten.sizes().begin(), weight_flatten.sizes().end()); | ||
const int64_t final_size = weight_bdim ? (input_logical_rank + 1) : input_logical_rank; | ||
new_shape.reserve(final_size); | ||
|
||
if (weight_flatten.dim() == 2 || !weight_bdim) { | ||
// if weight (without batching) is not a scalar, its size must match the "channel dimension" of input. To do the | ||
// decomposition, we pad the weight to | ||
|
||
// copies checks from prelu if the weight (without vmap) is not a scalar | ||
TORCH_CHECK(input_logical_rank > 0, "Not allow zero-dim input tensor."); | ||
|
||
int64_t channel_size = 1; // channel_size default to 1 | ||
if (input_logical_rank > 1) { | ||
const auto channel_dim = input_bdim ? 2 : 1; | ||
channel_size = input_.size(channel_dim); | ||
} | ||
const auto weight_num = weight_flatten.size(-1); | ||
TORCH_CHECK(channel_size == weight_num, | ||
"Mismatch of parameter numbers and input channel size. Found parameter numbers = ", weight_num, | ||
" and channel size = ", channel_size, "."); | ||
|
||
// pads to the left so that the flattened shape matches up with the channel | ||
if (!weight_bdim) { | ||
new_shape.insert(new_shape.begin(), 1); | ||
} else { | ||
new_shape.insert(new_shape.begin() + 1, 1); | ||
} | ||
} | ||
|
||
for (int64_t i = new_shape.size(); i < final_size; i ++) { | ||
new_shape.push_back(1); | ||
} | ||
TORCH_INTERNAL_ASSERT(new_shape.size() == final_size); | ||
const auto weight_padded = weight_flatten.view(new_shape); | ||
auto zero_tensor = at::zeros(1, input.options()); | ||
|
||
// decomposes function, | ||
auto res = at::maximum(zero_tensor, input_) + weight_padded * at::minimum(zero_tensor, input_); | ||
return std::make_tuple(res, 0); | ||
} | ||
|
||
VmapDimVector ensure_shape_with_bdim(const Tensor& input, const bool has_bdim, const int64_t batch_size) { | ||
// helper function that get the size of input, ensuring that there's batch dim, without expanding input | ||
if (has_bdim) { | ||
// sad to have to copy but got garbage if tried to return an IntArrayRef and just do input.sizes() | ||
VmapDimVector new_shape(input.sizes().begin(), input.sizes().end()); | ||
return new_shape; | ||
} | ||
VmapDimVector new_shape(1, batch_size); | ||
new_shape.reserve(input.dim() + 1); | ||
new_shape.insert(new_shape.end(), input.sizes().begin(), input.sizes().end()); | ||
return new_shape; | ||
} | ||
|
||
VmapDimVector shape_maybe_with_bdim(const Tensor& input, const bool need_bdim, const bool has_bdim, const int64_t batch_size) { | ||
// if need_bdim, will return the input with a guaranteed bdim. If not, will return the input logical size (no batch dim) | ||
if (need_bdim) { | ||
return ensure_shape_with_bdim(input, has_bdim, batch_size); | ||
} else if (has_bdim) { // !need_bdim && has_bdim | ||
VmapDimVector new_shape(input.sizes().begin() + 1, input.sizes().end()); | ||
return new_shape; | ||
} else { // !need_bdim && !has_bdim | ||
VmapDimVector new_shape(input.sizes().begin(), input.sizes().end()); | ||
return new_shape; | ||
} | ||
} | ||
|
||
std::tuple<Tensor, Tensor> prelu_backward_batched( | ||
const Tensor& grad_out, const Tensor& self, const Tensor& weight, | ||
const VmapDimVector& self_grad_shape, const VmapDimVector& weight_grad_padded_shape, const VmapDimVector& weight_grad_shape) { | ||
// helper function that produces a batched gradient for prelu using a decomposition inspired by the AOTAutograd ones | ||
const auto input_grad_collector = at::where(self > 0, grad_out, weight * grad_out); | ||
const auto input_grad = native::sum_to_size(input_grad_collector, self_grad_shape); | ||
const auto weight_grad_collector = at::where(self > 0, at::zeros(1, self.options()), self * grad_out); | ||
const auto weight_grad_collector_2 = native::sum_to_size(weight_grad_collector, weight_grad_padded_shape); | ||
const auto weight_grad = weight_grad_collector_2.view(weight_grad_shape); | ||
return std::make_tuple(input_grad, weight_grad); | ||
} | ||
|
||
std::tuple<Tensor,optional<int64_t>,Tensor,optional<int64_t>> prelu_backward_batch_rule( | ||
const Tensor& grad_out, optional<int64_t> grad_out_bdim, | ||
const Tensor& self, optional<int64_t> self_bdim, | ||
const Tensor& weight, optional<int64_t> weight_bdim) { | ||
const auto batch_size = get_bdim_size3(grad_out, grad_out_bdim, self, self_bdim, weight, weight_bdim); | ||
const auto grad_out_ = moveBatchDimToFront(grad_out, grad_out_bdim); | ||
const auto self_ = moveBatchDimToFront(self, self_bdim); | ||
const auto self_size_with_bdim = ensure_shape_with_bdim(self_, self_bdim.has_value(), batch_size); | ||
if (!weight_bdim && weight.dim() == 0) { | ||
VmapDimVector weight_grad_shape(1, batch_size); | ||
VmapDimVector weight_grad_shape_padded(self_bdim.has_value() ? self.dim() : self.dim() + 1, 1); | ||
weight_grad_shape_padded[0] = batch_size; | ||
const auto grads = prelu_backward_batched(grad_out_, self_, weight, self_size_with_bdim, weight_grad_shape_padded, weight_grad_shape); | ||
return std::make_tuple(std::get<0>(grads), 0, std::get<1>(grads), 0); | ||
} | ||
const auto weight_ = moveBatchDimToFront(weight, weight_bdim); | ||
auto weight_flatten = weight_; | ||
if (weight_flatten.dim() > 1) { | ||
// for an input [N, C, ...] | ||
// weight can be a non-vector but the total number of elements must be the same as C | ||
weight_flatten = at::flatten(weight_flatten, weight_bdim.has_value() ? 1 : 0, -1); | ||
} | ||
|
||
const int64_t self_logical_rank = rankWithoutBatchDim(self, self_bdim); | ||
VmapDimVector new_shape(weight_flatten.sizes().begin(), weight_flatten.sizes().end()); | ||
const int64_t final_size = weight_bdim ? (self_logical_rank + 1) : self_logical_rank; | ||
new_shape.reserve(final_size); | ||
|
||
if (weight_flatten.dim() == 2 || !weight_bdim) { | ||
// if weight (without batching) is not a scalar, its size must match the "channel dimension" of input. To do the | ||
// decomposition, we pad the weight to | ||
|
||
// copies checks from prelu if the weight (without vmap) is not a scalar | ||
TORCH_CHECK(self_logical_rank > 0, "Not allow zero-dim input tensor."); | ||
|
||
int64_t channel_size = 1; // channel_size default to 1 | ||
if (self_logical_rank > 1) { | ||
channel_size = self_.size(self_bdim.has_value() ? 2 : 1); | ||
} | ||
|
||
const auto weight_num = weight_flatten.size(-1); | ||
TORCH_CHECK(channel_size == weight_num, | ||
"Mismatch of parameter numbers and input channel size. Found parameter numbers = ", weight_num, | ||
" and channel size = ", channel_size, "."); | ||
|
||
// pads to the left so that the flattened shape matches up with the channel | ||
if (!weight_bdim) { | ||
new_shape.insert(new_shape.begin(), 1); | ||
} else { | ||
new_shape.insert(new_shape.begin() + 1, 1); | ||
} | ||
} | ||
|
||
for (int64_t i = new_shape.size(); i < final_size; i ++) { | ||
new_shape.push_back(1); | ||
} | ||
// weight grad does not depend on weight values. It is batched iff grad_out or self are batched | ||
const auto weight_grad_is_batched = grad_out_bdim.has_value() || self_bdim.has_value(); | ||
|
||
const auto weight_padded = weight_flatten.view(new_shape); | ||
const auto weight_grad_shape = shape_maybe_with_bdim(weight_, weight_grad_is_batched, weight_bdim.has_value(), batch_size); | ||
const auto weight_padded_grad_shape = shape_maybe_with_bdim(weight_padded, weight_grad_is_batched, weight_bdim.has_value(), batch_size); | ||
|
||
const auto grads = prelu_backward_batched(grad_out_, self_, weight_padded, self_size_with_bdim, weight_padded_grad_shape, weight_grad_shape); | ||
return std::make_tuple(std::get<0>(grads), 0, std::get<1>(grads), (weight_grad_is_batched ? optional<int64_t>(0) : nullopt)); | ||
} | ||
|
||
TORCH_LIBRARY_IMPL(aten, FT_BATCHED_KEY, m) { | ||
VMAP_SUPPORT(prelu, prelu_batch_rule) | ||
VMAP_SUPPORT(prelu_backward, prelu_backward_batch_rule) | ||
} | ||
}} // namespace at::functorch |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters