Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add autograd test for T.Spectrogram/T.MelSpectrogram #1340

Merged
merged 4 commits into from
Mar 31, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 6 additions & 0 deletions test/torchaudio_unittest/transforms/autograd_cpu_test.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,6 @@
from torchaudio_unittest.common_utils import PytorchTestCase
from .autograd_test_impl import AutogradTestMixin


class AutogradCPUTest(AutogradTestMixin, PytorchTestCase):
device = 'cpu'
10 changes: 10 additions & 0 deletions test/torchaudio_unittest/transforms/autograd_cuda_test.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,10 @@
from torchaudio_unittest.common_utils import (
PytorchTestCase,
skipIfNoCuda,
)
from .autograd_test_impl import AutogradTestMixin


@skipIfNoCuda
class AutogradCUDATest(AutogradTestMixin, PytorchTestCase):
device = 'cuda'
62 changes: 62 additions & 0 deletions test/torchaudio_unittest/transforms/autograd_test_impl.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,62 @@
from typing import List

from parameterized import parameterized
import torch
from torch.autograd import gradcheck, gradgradcheck
import torchaudio.transforms as T

from torchaudio_unittest.common_utils import (
TestBaseMixin,
get_whitenoise,
)


class AutogradTestMixin(TestBaseMixin):
def assert_grad(
self,
transform: torch.nn.Module,
inputs: List[torch.Tensor],
*,
nondet_tol: float = 0.0,
):
transform = transform.to(dtype=torch.float64, device=self.device)

inputs_ = []
for i in inputs:
i.requires_grad = True
inputs_.append(i.to(dtype=torch.float64, device=self.device))
assert gradcheck(transform, inputs_)
assert gradgradcheck(transform, inputs_, nondet_tol=nondet_tol)

@parameterized.expand([
({'pad': 0, 'normalized': False, 'power': None}, ),
({'pad': 3, 'normalized': False, 'power': None}, ),
({'pad': 0, 'normalized': True, 'power': None}, ),
({'pad': 3, 'normalized': True, 'power': None}, ),
({'pad': 0, 'normalized': False, 'power': 1.0}, ),
({'pad': 3, 'normalized': False, 'power': 1.0}, ),
({'pad': 0, 'normalized': True, 'power': 1.0}, ),
({'pad': 3, 'normalized': True, 'power': 1.0}, ),
({'pad': 0, 'normalized': False, 'power': 2.0}, ),
({'pad': 3, 'normalized': False, 'power': 2.0}, ),
({'pad': 0, 'normalized': True, 'power': 2.0}, ),
({'pad': 3, 'normalized': True, 'power': 2.0}, ),
])
def test_spectrogram(self, kwargs):
# replication_pad1d_backward_cuda is not deteministic and
# gives very small (~2.7756e-17) difference.
#
# See https://github.com/pytorch/pytorch/issues/54093
transform = T.Spectrogram(**kwargs)
waveform = get_whitenoise(sample_rate=8000, duration=0.05, n_channels=2)
mthrok marked this conversation as resolved.
Show resolved Hide resolved
self.assert_grad(transform, [waveform], nondet_tol=1e-10)

def test_melspectrogram(self):
# replication_pad1d_backward_cuda is not deteministic and

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

nit - is nondeterministic

# gives very small (~2.7756e-17) difference.
#
# See https://github.com/pytorch/pytorch/issues/54093
sample_rate = 8000
transform = T.MelSpectrogram(sample_rate=sample_rate)
waveform = get_whitenoise(sample_rate=sample_rate, duration=0.05, n_channels=2)
self.assert_grad(transform, [waveform], nondet_tol=1e-10)