Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix CommonVoice for French #1126

Merged
merged 22 commits into from
Dec 27, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
144 changes: 112 additions & 32 deletions test/torchaudio_unittest/datasets/commonvoice_test.py
Original file line number Diff line number Diff line change
@@ -1,8 +1,9 @@
import os
import csv
import os
from pathlib import Path
from typing import Tuple, Dict

from torchaudio.datasets import COMMONVOICE
from torch import Tensor
from torchaudio_unittest.common_utils import (
TempDirMixin,
TorchaudioTestCase,
Expand All @@ -11,55 +12,104 @@
normalize_wav,
)

from torchaudio.datasets import COMMONVOICE

class TestCommonVoice(TempDirMixin, TorchaudioTestCase):
backend = 'default'
_ORIGINAL_EXT_AUDIO = COMMONVOICE._ext_audio
_SAMPLE_RATE = 48000
_HEADERS = [u"client_ids", u"path", u"sentence", u"up_votes", u"down_votes", u"age", u"gender", u"accent"]

root_dir = None
data = []
_headers = [u"client_ids", u"path", u"sentence", u"up_votes", u"down_votes", u"age", u"gender", u"accent"]

def get_mock_dataset_en(root_dir) -> Tuple[Tensor, int, Dict[str, str]]:
mocked_data = []
# Note: extension is changed to wav for the sake of test
# Note: the first content is missing values for `age`, `gender` and `accent` as in the original data.
_train_csv_contents = [
_en_train_csv_contents = [
["9d16c5d980247861130e0480e2719f448be73d86a496c36d01a477cbdecd8cfd1399403d7a77bf458d211a70711b2da0845c",
"common_voice_en_18885784.wav",
"He was accorded a State funeral, and was buried in Drayton and Toowoomba Cemetery.", "2", "0", "", "", ""],
"common_voice_en_18885784.wav",
"He was accorded a State funeral, and was buried in Drayton and Toowoomba Cemetery.", "2", "0", "", "",
""],
["c82eb9291328620f06025a1f8112b909099e447e485e99236cb87df008650250e79fea5ca772061fb6a370830847b9c44d20",
"common_voice_en_556542.wav", "Once more into the breach", "2", "0", "thirties", "male", "us"],
"common_voice_en_556542.wav", "Once more into the breach", "2", "0", "thirties", "male", "us"],
["f74d880c5ad4c5917f314a604d3fc4805159d255796fb9f8defca35333ecc002bdf53dc463503c12674ea840b21b4a507b7c",
"common_voice_en_18607573.wav",
"Caddy, show Miss Clare and Miss Summerson their rooms.", "2", "0", "twenties", "male", "canada"],
"common_voice_en_18607573.wav",
"Caddy, show Miss Clare and Miss Summerson their rooms.", "2", "0", "twenties", "male", "canada"],
]
# Tsv file name difference does not mean different subset, testing as a whole dataset here
tsv_filename = os.path.join(root_dir, "train.tsv")
audio_base_path = os.path.join(root_dir, "clips")
os.makedirs(audio_base_path, exist_ok=True)
with open(tsv_filename, "w", newline='') as tsv:
writer = csv.writer(tsv, delimiter='\t')
writer.writerow(_HEADERS)
for i, content in enumerate(_en_train_csv_contents):
writer.writerow(content)
# Generate and store audio
audio_path = os.path.join(audio_base_path, content[1])
data = get_whitenoise(sample_rate=_SAMPLE_RATE, duration=1, n_channels=1, seed=i, dtype='float32')
save_wav(audio_path, data, _SAMPLE_RATE)
# Append data entry
mocked_data.append((normalize_wav(data), _SAMPLE_RATE, dict(zip(_HEADERS, content))))
return mocked_data


def get_mock_dataset_fr(root_dir) -> Tuple[Tensor, int, Dict[str, str]]:
mocked_data = []
_fr_train_csv_contents = [
[
"a2e8e1e1cc74d08c92a53d7b9ff84e077eb90410edd85b8882f16fd037cecfcb6a19413c6c63ce6458cfea9579878fa91cef"
"18343441c601cae0597a4b0d3144",
"89e67e7682b36786a0b4b4022c4d42090c86edd96c78c12d30088e62522b8fe466ea4912e6a1055dfb91b296a0743e0a2bbe"
"16cebac98ee5349e3e8262cb9329",
"Or sur ce point nous n’avons aucune réponse de votre part.", "2", "0", "twenties", "male", "france"],
[
"a2e8e1e1cc74d08c92a53d7b9ff84e077eb90410edd85b8882f16fd037cecfcb6a19413c6c63ce6458cfea9579878fa91cef18"
"343441c601cae0597a4b0d3144",
"87d71819a26179e93acfee149d0b21b7bf5e926e367d80b2b3792d45f46e04853a514945783ff764c1fc237b4eb0ee2b0a7a7"
"cbd395acbdfcfa9d76a6e199bbd",
"Monsieur de La Verpillière, laissez parler le ministre", "2", "0", "twenties", "male", "france"],

]
sample_rate = 48000
# Tsv file name difference does not mean different subset, testing as a whole dataset here
tsv_filename = os.path.join(root_dir, "train.tsv")
audio_base_path = os.path.join(root_dir, "clips")
os.makedirs(audio_base_path, exist_ok=True)
with open(tsv_filename, "w", newline='') as tsv:
writer = csv.writer(tsv, delimiter='\t')
writer.writerow(_HEADERS)
for i, content in enumerate(_fr_train_csv_contents):
content[2] = str(content[2].encode("utf-8"))
writer.writerow(content)
# Generate and store audio
audio_path = os.path.join(audio_base_path, content[1] + _ORIGINAL_EXT_AUDIO)
data = get_whitenoise(sample_rate=_SAMPLE_RATE, duration=1, n_channels=1, seed=i, dtype='float32')
save_wav(audio_path, data, _SAMPLE_RATE)

# Append data entry
mocked_data.append((normalize_wav(data), _SAMPLE_RATE, dict(zip(_HEADERS, content))))
return mocked_data


class TestCommonVoiceEN(TempDirMixin, TorchaudioTestCase):
backend = 'default'
root_dir = None

@classmethod
def setUpClass(cls):
cls.root_dir = cls.get_base_temp_dir()
# Tsv file name difference does not mean different subset, testing as a whole dataset here
tsv_filename = os.path.join(cls.root_dir, "train.tsv")
audio_base_path = os.path.join(cls.root_dir, "clips")
os.makedirs(audio_base_path, exist_ok=True)
with open(tsv_filename, "w", newline='') as tsv:
writer = csv.writer(tsv, delimiter='\t')
writer.writerow(cls._headers)
for i, content in enumerate(cls._train_csv_contents):
writer.writerow(content)

# Generate and store audio
audio_path = os.path.join(audio_base_path, content[1])
data = get_whitenoise(sample_rate=cls.sample_rate, duration=1, n_channels=1, seed=i, dtype='float32')
save_wav(audio_path, data, cls.sample_rate)

# Append data entry
cls.data.append((normalize_wav(data), cls.sample_rate, dict(zip(cls._headers, content))))
cls.data = get_mock_dataset_en(cls.root_dir)
COMMONVOICE._ext_audio = ".wav"

@classmethod
def tearDownClass(cls):
COMMONVOICE._ext_audio = _ORIGINAL_EXT_AUDIO

def _test_commonvoice(self, dataset):
n_ite = 0
for i, (waveform, sample_rate, dictionary) in enumerate(dataset):
expected_dictionary = self.data[i][2]
expected_data = self.data[i][0]
self.assertEqual(expected_data, waveform, atol=5e-5, rtol=1e-8)
assert sample_rate == TestCommonVoice.sample_rate
assert sample_rate == _SAMPLE_RATE
assert dictionary == expected_dictionary
n_ite += 1
assert n_ite == len(self.data)
Expand All @@ -71,3 +121,33 @@ def test_commonvoice_str(self):
def test_commonvoice_path(self):
dataset = COMMONVOICE(Path(self.root_dir))
self._test_commonvoice(dataset)


class TestCommonVoiceFR(TempDirMixin, TorchaudioTestCase):
backend = 'default'
root_dir = None

@classmethod
def setUpClass(cls):
cls.root_dir = cls.get_base_temp_dir()
cls.data = get_mock_dataset_fr(cls.root_dir)
COMMONVOICE._ext_audio = ".mp3"

@classmethod
def tearDownClass(cls):
COMMONVOICE._ext_audio = _ORIGINAL_EXT_AUDIO

def _test_commonvoice(self, dataset):
n_ite = 0
for i, (waveform, sample_rate, dictionary) in enumerate(dataset):
expected_dictionary = self.data[i][2]
expected_data = self.data[i][0]
self.assertEqual(expected_data, waveform, atol=5e-5, rtol=1e-8)
assert sample_rate == _SAMPLE_RATE
assert dictionary == expected_dictionary
n_ite += 1
assert n_ite == len(self.data)

def test_commonvoice_str(self):
dataset = COMMONVOICE(self.root_dir)
self._test_commonvoice(dataset)
17 changes: 13 additions & 4 deletions test/torchaudio_unittest/datasets/utils_test.py
Original file line number Diff line number Diff line change
@@ -1,14 +1,23 @@
from torchaudio.datasets import utils as dataset_utils
from torchaudio.datasets.commonvoice import COMMONVOICE

from torchaudio_unittest.common_utils import (
TempDirMixin,
TorchaudioTestCase,
get_asset_path,
)

from torchaudio.datasets import utils as dataset_utils
from torchaudio.datasets.commonvoice import COMMONVOICE

original_ext_audio = COMMONVOICE._ext_audio


class TestIterator(TorchaudioTestCase):
@classmethod
def setUpClass(cls):
COMMONVOICE._ext_audio = ".wav"

@classmethod
def tearDownClass(cls):
COMMONVOICE._ext_audio = original_ext_audio
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Looks good, but this makes me think that we should not be using CommonVoice dataset implementation in this test.

This is not the scope of this PR but we should define an trivial, dedicated Dataset for this utility test and stop using CommonVoice here. Then we can finally remove the mp3 asset CommonVoice/cv-corpus-4-2019-12-10/tt/clips/common_voice_tt_00000000.mp3.


backend = 'default'
path = get_asset_path('CommonVoice', 'cv-corpus-4-2019-12-10', 'tt')

Expand Down
14 changes: 8 additions & 6 deletions torchaudio/datasets/commonvoice.py
Original file line number Diff line number Diff line change
@@ -1,26 +1,28 @@
import os
import csv
import os
import warnings
from pathlib import Path
from typing import List, Dict, Tuple, Union, Optional

import torchaudio
from torch import Tensor
from torch.utils.data import Dataset

import torchaudio


def load_commonvoice_item(line: List[str],
header: List[str],
path: str,
folder_audio: str) -> Tuple[Tensor, int, Dict[str, str]]:
folder_audio: str,
ext_audio: str) -> Tuple[Tensor, int, Dict[str, str]]:
# Each line as the following data:
# client_id, path, sentence, up_votes, down_votes, age, gender, accent

assert header[1] == "path"
fileid = line[1]

filename = os.path.join(path, folder_audio, fileid)

if not filename.endswith(ext_audio):
filename += ext_audio
waveform, sample_rate = torchaudio.load(filename)

dic = dict(zip(header, line))
Expand Down Expand Up @@ -95,7 +97,7 @@ def __getitem__(self, n: int) -> Tuple[Tensor, int, Dict[str, str]]:
``up_votes``, ``down_votes``, ``age``, ``gender`` and ``accent``.
"""
line = self._walker[n]
return load_commonvoice_item(line, self._header, self._path, self._folder_audio)
return load_commonvoice_item(line, self._header, self._path, self._folder_audio, self._ext_audio)

def __len__(self) -> int:
return len(self._walker)