Skip to content

Commit

Permalink
feat(//core/ir): Implementing new internal input spec type
Browse files Browse the repository at this point in the history
This commit implements the new input spec type trtorch::core::ir::Input,
which incapsulates InputRange and adds the new dtype and tensor format arguments.

It also changes DataType op_precision in the engine settings to
std::set<nvinfer1::DataType> enabled_precisions, allowing the compiler
to set more than a single precision without resorting to catch all rules
such as FP32 and Int8 without FP16.

Signed-off-by: Naren Dasan <[email protected]>
Signed-off-by: Naren Dasan <[email protected]>
  • Loading branch information
narendasan committed Jul 21, 2021
1 parent 8e67e38 commit 316df28
Show file tree
Hide file tree
Showing 22 changed files with 333 additions and 188 deletions.
10 changes: 5 additions & 5 deletions core/compiler.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -194,7 +194,7 @@ torch::jit::script::Module CompileGraphWithFallback(const torch::jit::script::Mo
LOG_INFO(*g << "(LoweringGraph)\n");

// segment the graph and convert segmented TensorRT block
auto segmented_blocks = partitioning::Partition(g, convert_cfg.input_ranges, cfg.partition_info);
auto segmented_blocks = partitioning::Partition(g, convert_cfg.inputs, cfg.partition_info);
if (segmented_blocks.size() == 1 && segmented_blocks[0].target() == partitioning::SegmentedBlock::kTorch) {
LOG_WARNING("Didn't generate any TensorRT engines, the compiler did nothing\n");
return mod;
Expand All @@ -208,16 +208,16 @@ torch::jit::script::Module CompileGraphWithFallback(const torch::jit::script::Mo
for (auto& seg_block : segmented_blocks) {
std::string cur_block_target =
seg_block.target() == partitioning::SegmentedBlock::kTensorRT ? "TensorRT" : "Torch";
LOG_INFO(*seg_block.g() << "(MiniGraphIn" << cur_block_target << "Block)\n");
LOG_INFO(*seg_block.g() << "(Sub Graph" << cur_block_target << "Block)\n");
std::ostringstream trt_engine_id;
trt_engine_id << reinterpret_cast<const int*>(&seg_block);
if (seg_block.target() == partitioning::SegmentedBlock::kTensorRT) {
std::vector<ir::InputRange> input_ranges;
std::vector<ir::Input> inputs;
for (auto& shape : seg_block.in_shape()) {
input_ranges.push_back(ir::InputRange(shape));
inputs.push_back(ir::Input(shape));
}
// update the input ranges for each segments
convert_cfg.input_ranges = input_ranges;
convert_cfg.inputs = inputs;
auto engine = conversion::ConvertBlockToEngine(seg_block.block(), convert_cfg, named_params);
auto temp_g = std::make_shared<torch::jit::Graph>();
AddEngineToGraph(new_mod, temp_g, engine, trt_engine_id.str(), true);
Expand Down
2 changes: 1 addition & 1 deletion core/compiler.h
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@ namespace trtorch {
namespace core {

struct CompileSpec {
CompileSpec(std::vector<ir::InputRange> input_ranges) : convert_info(std::move(input_ranges)) {}
CompileSpec(std::vector<ir::Input> inputs) : convert_info(std::move(inputs)) {}
conversion::ConversionInfo convert_info;
partitioning::PartitionInfo partition_info;
};
Expand Down
39 changes: 18 additions & 21 deletions core/conversion/conversion.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -128,7 +128,7 @@ void AddLayer(ConversionCtx* ctx, const torch::jit::Node* n) {
void AddInputs(
ConversionCtx* ctx,
at::ArrayRef<const torch::jit::Value*> inputs,
std::vector<ir::InputRange>& input_dims) {
std::vector<ir::Input>& input_specs) {
std::vector<const torch::jit::Value*> input_tensors;
for (auto in : inputs) {
// Disregarding inputs that are not tensors
Expand All @@ -142,36 +142,33 @@ void AddInputs(
}
}

std::stringstream ss;
ss << "Input Dimension Specs: [\n";
for (auto i : input_specs) {
ss << " " << i << ",";
}
ss << ']';
LOG_DEBUG(ss.str());

TRTORCH_CHECK(
input_tensors.size() == input_dims.size(),
input_tensors.size() == input_specs.size(),
"Expected dimension specifications for all input tensors"
<< ", but found " << input_tensors.size() << " input tensors and " << input_dims.size()
<< ", but found " << input_tensors.size() << " input tensors and " << input_specs.size()
<< " dimension specs (conversion.AddInputs)");

auto profile = ctx->builder->createOptimizationProfile();

TRTORCH_CHECK(
ctx->input_dtypes.size() == 0 || ctx->input_dtypes.size() == input_tensors.size(),
"Number of input_dtypes : " << ctx->input_dtypes.size()
<< " should either be 0 or equal to number of input_tensors which is "
<< input_tensors.size() << " (conversion.AddInputs)");

// If the input_dtypes is not provided, assume all the input tensors to be in float32
if (ctx->input_dtypes.size() == 0) {
LOG_DEBUG("Input datatypes are not provided explicitly. Default float32 datatype is being used for all inputs");
ctx->input_dtypes = std::vector<nvinfer1::DataType>{input_tensors.size(), nvinfer1::DataType::kFLOAT};
}

for (size_t i = 0; i < input_tensors.size(); i++) {
auto in = input_tensors[i];
auto dims = input_dims[i];
auto dims = input_specs[i];
std::string name = std::string("input_") + std::to_string(ctx->num_inputs);
LOG_INFO(
ctx->logger,
"Adding Input " << in->debugName() << " named : " << name << ", shape: " << dims.input_shape
<< ", dtype : " << ctx->input_dtypes[i] << " in engine (conversion.AddInputs)");
auto trt_in = ctx->net->addInput(name.c_str(), ctx->input_dtypes[i], dims.input_shape);
"Adding Input " << in->debugName() << " (named: " << name << "): " << dims << " in engine (conversion.AddInputs)");

auto trt_in = ctx->net->addInput(name.c_str(), dims.dtype, dims.input_shape);
TRTORCH_CHECK(trt_in, "Failed to add input node: " << in->debugName() << " (conversion.AddInputs)");
trt_in->setAllowedFormats(1U << static_cast<int>(dims.format));

profile->setDimensions(trt_in->getName(), nvinfer1::OptProfileSelector::kMIN, dims.min);
profile->setDimensions(trt_in->getName(), nvinfer1::OptProfileSelector::kOPT, dims.opt);
Expand All @@ -191,7 +188,7 @@ void AddInputs(

ctx->cfg->addOptimizationProfile(profile);
#if NV_TENSORRT_MAJOR > 7 || (NV_TENSORRT_MAJOR == 7 && NV_TENSORRT_MINOR >= 1)
if (ctx->op_precision == nvinfer1::DataType::kINT8) {
if (ctx->enabled_precisions.find(nvinfer1::DataType::kINT8) != ctx->enabled_precisions.end()) {
ctx->cfg->setCalibrationProfile(profile);
}
#endif
Expand Down Expand Up @@ -363,7 +360,7 @@ void ConvertBlockToNetDef(

auto inputs = b->inputs();
AddParamsToCtxValueMap(ctx, static_params);
AddInputs(ctx, inputs, build_info.input_ranges);
AddInputs(ctx, inputs, build_info.inputs);

auto nodes = b->nodes();

Expand Down
6 changes: 3 additions & 3 deletions core/conversion/conversion.h
Original file line number Diff line number Diff line change
Expand Up @@ -12,10 +12,10 @@ namespace core {
namespace conversion {

struct ConversionInfo {
std::vector<ir::InputRange> input_ranges;
std::vector<ir::Input> inputs;
BuilderSettings engine_settings;
ConversionInfo(std::vector<ir::InputRange> input_ranges)
: input_ranges(std::move(input_ranges)), engine_settings(BuilderSettings()) {}
ConversionInfo(std::vector<ir::Input> inputs)
: inputs(std::move(inputs)), engine_settings(BuilderSettings()) {}
};

// TODO: REMOVE GRAPH AND PARAMS AND MOVE FULLY TO INLINED CONSTANTS
Expand Down
50 changes: 26 additions & 24 deletions core/conversion/conversionctx/ConversionCtx.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -10,8 +10,11 @@ namespace conversion {
// clang-format off
std::ostream& operator<<(std::ostream& os, const BuilderSettings& s) {
os << "Settings requested for TensorRT engine:" \
<< "\n Operating Precision: " << s.op_precision \
<< "\n TF32 Floating Point Computation Enabled: " << !s.disable_tf32 \
<< "\n Enabled Precisions: ";
for (auto p = s.enabled_precisions.begin(); p != s.enabled_precisions.end(); ++p) {
os << *p << ' ';
}
os << "\n TF32 Floating Point Computation Enabled: " << !s.disable_tf32 \
<< "\n Truncate Long and Double: " << s.truncate_long_and_double \
<< "\n Make Refittable Engine: " << s.refit \
<< "\n Debuggable Engine: " << s.debug \
Expand Down Expand Up @@ -57,30 +60,29 @@ ConversionCtx::ConversionCtx(BuilderSettings build_settings)
LOG_DEBUG(build_settings);
cfg = builder->createBuilderConfig();

switch (settings.op_precision) {
case nvinfer1::DataType::kHALF:
TRTORCH_CHECK(builder->platformHasFastFp16(), "Requested inference in FP16 but platform does not support FP16");
cfg->setFlag(nvinfer1::BuilderFlag::kFP16);
break;
case nvinfer1::DataType::kINT8:
TRTORCH_CHECK(builder->platformHasFastInt8(), "Requested inference in INT8 but platform does not support INT8");
cfg->setFlag(nvinfer1::BuilderFlag::kINT8);
if (!settings.strict_types) {
for(auto p = settings.enabled_precisions.begin(); p != settings.enabled_precisions.end(); ++p) {
switch (*p) {
case nvinfer1::DataType::kHALF:
TRTORCH_CHECK(builder->platformHasFastFp16(), "Requested inference in FP16 but platform does not support FP16");
cfg->setFlag(nvinfer1::BuilderFlag::kFP16);
}
TRTORCH_CHECK(
settings.calibrator != nullptr,
"Requested inference in INT8 but no calibrator provided, set the ptq_calibrator field in the CompileSpec struct with your calibrator");
cfg->setInt8Calibrator(settings.calibrator);
break;
case nvinfer1::DataType::kFLOAT:
case nvinfer1::DataType::kINT32:
case nvinfer1::DataType::kBOOL:
default:
break;
break;
case nvinfer1::DataType::kINT8:
TRTORCH_CHECK(builder->platformHasFastInt8(), "Requested inference in INT8 but platform does not support INT8");
cfg->setFlag(nvinfer1::BuilderFlag::kINT8);
TRTORCH_CHECK(
settings.calibrator != nullptr,
"Requested inference in INT8 but no calibrator provided, set the ptq_calibrator field in the CompileSpec struct with your calibrator");
cfg->setInt8Calibrator(settings.calibrator);
break;
case nvinfer1::DataType::kFLOAT:
case nvinfer1::DataType::kINT32:
case nvinfer1::DataType::kBOOL:
default:
break;
}
}

op_precision = settings.op_precision;
enabled_precisions = settings.enabled_precisions;
input_dtypes = settings.input_dtypes;

if (settings.disable_tf32) {
Expand Down Expand Up @@ -119,7 +121,7 @@ ConversionCtx::ConversionCtx(BuilderSettings build_settings)
static_cast<int>(settings.device.dla_core) < nbDLACores,
"Configured DLA Core ID: " << settings.device.dla_core
<< " not available. Total number of available DLA Cores: " << nbDLACores);
TRTORCH_CHECK(settings.op_precision != nvinfer1::DataType::kFLOAT, "DLA supports only fp16 or int8 precision");
TRTORCH_CHECK(settings.enabled_precisions.find(nvinfer1::DataType::kFLOAT) == settings.enabled_precisions.end(), "DLA supports only fp16 or int8 precision");
cfg->setDLACore(settings.device.dla_core);
}
}
Expand Down
5 changes: 3 additions & 2 deletions core/conversion/conversionctx/ConversionCtx.h
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@
#include <map>
#include <memory>
#include <unordered_map>
#include <set>

#include "NvInfer.h"
#include "torch/csrc/jit/ir/ir.h"
Expand All @@ -23,7 +24,7 @@ struct Device {
};

struct BuilderSettings {
nvinfer1::DataType op_precision = nvinfer1::DataType::kFLOAT;
std::set<nvinfer1::DataType> enabled_precisions = {nvinfer1::DataType::kFLOAT};
std::vector<nvinfer1::DataType> input_dtypes;
bool disable_tf32 = false;
bool refit = false;
Expand Down Expand Up @@ -59,7 +60,7 @@ struct ConversionCtx {
nvinfer1::INetworkDefinition* net;
nvinfer1::IBuilderConfig* cfg;
std::vector<nvinfer1::DataType> input_dtypes;
nvinfer1::DataType op_precision;
std::set<nvinfer1::DataType> enabled_precisions;
BuilderSettings settings;
util::logging::TRTorchLogger logger;
// Pointers to data that needs to remain alive until conversion is done
Expand Down
3 changes: 2 additions & 1 deletion core/conversion/converters/impl/activation.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -177,7 +177,8 @@ auto acthardtanh TRTORCH_UNUSED =
std::string pluginName = "CustomGeluPluginDynamic";
nvinfer1::PluginFieldCollection fc;
std::vector<nvinfer1::PluginField> f;
int type_id = ctx->settings.op_precision == nvinfer1::DataType::kFLOAT
//REVIEW is this right?
int type_id = ctx->settings.enabled_precisions.find(nvinfer1::DataType::kHALF) == ctx->settings.enabled_precisions.end()
? 0
: 1; // Integer encoding the DataType (0: FP32, 1: FP16)
f.emplace_back(nvinfer1::PluginField("type_id", &type_id, nvinfer1::PluginFieldType::kINT32, 1));
Expand Down
2 changes: 1 addition & 1 deletion core/ir/BUILD
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@ cc_library(
"ir.h"
],
srcs = [
"InputRange.cpp",
"Input.cpp"
],
deps = [
"@tensorrt//:nvinfer",
Expand Down
Loading

0 comments on commit 316df28

Please sign in to comment.