-
Notifications
You must be signed in to change notification settings - Fork 72
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
testing autoquant #114
Open
HDCharles
wants to merge
4
commits into
gh/HDCharles/4/base
Choose a base branch
from
gh/HDCharles/4/head
base: gh/HDCharles/4/base
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
testing autoquant #114
Conversation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Summary: improves runtime by 19.70 -> 19.76 img/sec ❯ one sh run.sh 0%| | 0/64 [00:00<?, ?it/s]/home/cdhernandez/local/pytorch/torch/nested/__init__.py:166: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. (Triggered internally at /home/cdhernandez/local/pytorch/aten/src/ATen/NestedTensorImpl.cpp:177.) return _nested.nested_tensor( 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 64/64 [06:32<00:00, 6.14s/it] sam_model_type,batch_size,memory(MiB),memory(%),img_s(avg),batch_ms(avg)/batch_size,mIoU,use_compile,use_half,compress,epilogue_fusion_first,use_compile_decoder,use_nested_tensor,use_rel_pos,pad_input_image_batch,num_workers,num_batches,num_images,profile_path,memory_path vit_h,16,14532,17,18.861125832244333,53.01910442113876,0.5865236891447146,max-autotune,torch.bfloat16,None,False,False,True,True,True,32,64,1024,None,None 0%| | 0/64 [00:00<?, ?it/s]/home/cdhernandez/local/pytorch/torch/nested/__init__.py:166: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. (Triggered internally at /home/cdhernandez/local/pytorch/aten/src/ATen/NestedTensorImpl.cpp:177.) return _nested.nested_tensor( 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 64/64 [07:08<00:00, 6.70s/it] vit_h,16,14395,17,19.70834741975898,50.73992145061493,0.5875230894143607,max-autotune,torch.bfloat16,dynamic_quant,False,False,True,True,True,32,64,1024,None,None <class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 3.850527899339795 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.3931088875979185 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.3931088875979185 3.190660197287798 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 4.768232116475701 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 3.8598313461989164 shape=(torch.Size([78400, 1280]), torch.Size([3840, 1280]), torch.Size([3840])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> <class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 1.4865157660096884 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 1.8800818361341953 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 1.8800818361341953 1.179535873234272 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 1.7427184619009497 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 1.4965661568567157 shape=(torch.Size([78400, 1280]), torch.Size([1280, 1280]), torch.Size([1280])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQFloatLinearWeight'> <class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 4.215262923389673 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.661373794078827 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.661373794078827 3.485689079388976 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 5.220260447822511 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 4.2220821138471365 shape=(torch.Size([65536, 1280]), torch.Size([5120, 1280]), torch.Size([5120])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> <class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 4.666170105338097 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.113288130611181 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.113288130611181 2.626298717223108 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 4.855024302378297 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 4.674202110618353 shape=(torch.Size([65536, 5120]), torch.Size([1280, 5120]), torch.Size([1280])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> <class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 3.2269158866256475 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 3.7462301552295685 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 3.7462301552295685 2.6572815608233213 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 3.9978391956537966 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 3.2370124012231827 shape=(torch.Size([65536, 1280]), torch.Size([3840, 1280]), torch.Size([3840])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> <class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 1.2530277017503977 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 1.5717314090579748 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 1.5717314090579748 0.9894231799989939 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 1.5166664496064186 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 1.2606457574293017 shape=(torch.Size([65536, 1280]), torch.Size([1280, 1280]), torch.Size([1280])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 0%| | 0/64 [00:00<?, ?it/s]/home/cdhernandez/local/pytorch/torch/nested/__init__.py:166: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. (Triggered internally at /home/cdhernandez/local/pytorch/aten/src/ATen/NestedTensorImpl.cpp:177.) return _nested.nested_tensor( 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 64/64 [02:15<00:00, 2.12s/it] vit_h,16,14463,17,19.76190752324237,50.602402567863464,0.5875653903095147,max-autotune,torch.bfloat16,auto_quant,False,False,True,True,True,32,64,1024,None,None Test Plan: Reviewers: Subscribers: Tasks: Tags: [ghstack-poisoned]
HDCharles
added a commit
that referenced
this pull request
Mar 1, 2024
Summary: improves runtime by 19.70 -> 19.76 img/sec ❯ one sh run.sh 0%| | 0/64 [00:00<?, ?it/s]/home/cdhernandez/local/pytorch/torch/nested/__init__.py:166: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. (Triggered internally at /home/cdhernandez/local/pytorch/aten/src/ATen/NestedTensorImpl.cpp:177.) return _nested.nested_tensor( 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 64/64 [06:32<00:00, 6.14s/it] sam_model_type,batch_size,memory(MiB),memory(%),img_s(avg),batch_ms(avg)/batch_size,mIoU,use_compile,use_half,compress,epilogue_fusion_first,use_compile_decoder,use_nested_tensor,use_rel_pos,pad_input_image_batch,num_workers,num_batches,num_images,profile_path,memory_path vit_h,16,14532,17,18.861125832244333,53.01910442113876,0.5865236891447146,max-autotune,torch.bfloat16,None,False,False,True,True,True,32,64,1024,None,None 0%| | 0/64 [00:00<?, ?it/s]/home/cdhernandez/local/pytorch/torch/nested/__init__.py:166: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. (Triggered internally at /home/cdhernandez/local/pytorch/aten/src/ATen/NestedTensorImpl.cpp:177.) return _nested.nested_tensor( 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 64/64 [07:08<00:00, 6.70s/it] vit_h,16,14395,17,19.70834741975898,50.73992145061493,0.5875230894143607,max-autotune,torch.bfloat16,dynamic_quant,False,False,True,True,True,32,64,1024,None,None <class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 3.850527899339795 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.3931088875979185 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.3931088875979185 3.190660197287798 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 4.768232116475701 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 3.8598313461989164 shape=(torch.Size([78400, 1280]), torch.Size([3840, 1280]), torch.Size([3840])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> <class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 1.4865157660096884 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 1.8800818361341953 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 1.8800818361341953 1.179535873234272 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 1.7427184619009497 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 1.4965661568567157 shape=(torch.Size([78400, 1280]), torch.Size([1280, 1280]), torch.Size([1280])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQFloatLinearWeight'> <class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 4.215262923389673 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.661373794078827 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.661373794078827 3.485689079388976 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 5.220260447822511 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 4.2220821138471365 shape=(torch.Size([65536, 1280]), torch.Size([5120, 1280]), torch.Size([5120])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> <class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 4.666170105338097 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.113288130611181 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.113288130611181 2.626298717223108 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 4.855024302378297 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 4.674202110618353 shape=(torch.Size([65536, 5120]), torch.Size([1280, 5120]), torch.Size([1280])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> <class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 3.2269158866256475 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 3.7462301552295685 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 3.7462301552295685 2.6572815608233213 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 3.9978391956537966 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 3.2370124012231827 shape=(torch.Size([65536, 1280]), torch.Size([3840, 1280]), torch.Size([3840])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> <class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 1.2530277017503977 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 1.5717314090579748 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 1.5717314090579748 0.9894231799989939 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 1.5166664496064186 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 1.2606457574293017 shape=(torch.Size([65536, 1280]), torch.Size([1280, 1280]), torch.Size([1280])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 0%| | 0/64 [00:00<?, ?it/s]/home/cdhernandez/local/pytorch/torch/nested/__init__.py:166: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. (Triggered internally at /home/cdhernandez/local/pytorch/aten/src/ATen/NestedTensorImpl.cpp:177.) return _nested.nested_tensor( 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 64/64 [02:15<00:00, 2.12s/it] vit_h,16,14463,17,19.76190752324237,50.602402567863464,0.5875653903095147,max-autotune,torch.bfloat16,auto_quant,False,False,True,True,True,32,64,1024,None,None Test Plan: Reviewers: Subscribers: Tasks: Tags: ghstack-source-id: ac0ddc12a9e7bc282af10eb33190edc5b527112a Pull Request resolved: #114
facebook-github-bot
added
the
CLA Signed
This label is managed by the Facebook bot. Authors need to sign the CLA before a PR can be reviewed.
label
Mar 1, 2024
Summary: improves runtime by 19.70 -> 19.76 img/sec ❯ one sh run.sh 0%| | 0/64 [00:00<?, ?it/s]/home/cdhernandez/local/pytorch/torch/nested/__init__.py:166: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. (Triggered internally at /home/cdhernandez/local/pytorch/aten/src/ATen/NestedTensorImpl.cpp:177.) return _nested.nested_tensor( 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 64/64 [06:32<00:00, 6.14s/it] sam_model_type,batch_size,memory(MiB),memory(%),img_s(avg),batch_ms(avg)/batch_size,mIoU,use_compile,use_half,compress,epilogue_fusion_first,use_compile_decoder,use_nested_tensor,use_rel_pos,pad_input_image_batch,num_workers,num_batches,num_images,profile_path,memory_path vit_h,16,14532,17,18.861125832244333,53.01910442113876,0.5865236891447146,max-autotune,torch.bfloat16,None,False,False,True,True,True,32,64,1024,None,None 0%| | 0/64 [00:00<?, ?it/s]/home/cdhernandez/local/pytorch/torch/nested/__init__.py:166: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. (Triggered internally at /home/cdhernandez/local/pytorch/aten/src/ATen/NestedTensorImpl.cpp:177.) return _nested.nested_tensor( 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 64/64 [07:08<00:00, 6.70s/it] vit_h,16,14395,17,19.70834741975898,50.73992145061493,0.5875230894143607,max-autotune,torch.bfloat16,dynamic_quant,False,False,True,True,True,32,64,1024,None,None <class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 3.850527899339795 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.3931088875979185 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.3931088875979185 3.190660197287798 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 4.768232116475701 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 3.8598313461989164 shape=(torch.Size([78400, 1280]), torch.Size([3840, 1280]), torch.Size([3840])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> <class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 1.4865157660096884 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 1.8800818361341953 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 1.8800818361341953 1.179535873234272 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 1.7427184619009497 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 1.4965661568567157 shape=(torch.Size([78400, 1280]), torch.Size([1280, 1280]), torch.Size([1280])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQFloatLinearWeight'> <class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 4.215262923389673 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.661373794078827 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.661373794078827 3.485689079388976 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 5.220260447822511 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 4.2220821138471365 shape=(torch.Size([65536, 1280]), torch.Size([5120, 1280]), torch.Size([5120])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> <class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 4.666170105338097 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.113288130611181 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.113288130611181 2.626298717223108 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 4.855024302378297 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 4.674202110618353 shape=(torch.Size([65536, 5120]), torch.Size([1280, 5120]), torch.Size([1280])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> <class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 3.2269158866256475 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 3.7462301552295685 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 3.7462301552295685 2.6572815608233213 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 3.9978391956537966 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 3.2370124012231827 shape=(torch.Size([65536, 1280]), torch.Size([3840, 1280]), torch.Size([3840])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> <class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 1.2530277017503977 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 1.5717314090579748 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 1.5717314090579748 0.9894231799989939 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 1.5166664496064186 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 1.2606457574293017 shape=(torch.Size([65536, 1280]), torch.Size([1280, 1280]), torch.Size([1280])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 0%| | 0/64 [00:00<?, ?it/s]/home/cdhernandez/local/pytorch/torch/nested/__init__.py:166: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. (Triggered internally at /home/cdhernandez/local/pytorch/aten/src/ATen/NestedTensorImpl.cpp:177.) return _nested.nested_tensor( 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 64/64 [02:15<00:00, 2.12s/it] vit_h,16,14463,17,19.76190752324237,50.602402567863464,0.5875653903095147,max-autotune,torch.bfloat16,auto_quant,False,False,True,True,True,32,64,1024,None,None Test Plan: Reviewers: Subscribers: Tasks: Tags: [ghstack-poisoned]
HDCharles
added a commit
that referenced
this pull request
Mar 5, 2024
Summary: improves runtime by 19.70 -> 19.76 img/sec ❯ one sh run.sh 0%| | 0/64 [00:00<?, ?it/s]/home/cdhernandez/local/pytorch/torch/nested/__init__.py:166: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. (Triggered internally at /home/cdhernandez/local/pytorch/aten/src/ATen/NestedTensorImpl.cpp:177.) return _nested.nested_tensor( 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 64/64 [06:32<00:00, 6.14s/it] sam_model_type,batch_size,memory(MiB),memory(%),img_s(avg),batch_ms(avg)/batch_size,mIoU,use_compile,use_half,compress,epilogue_fusion_first,use_compile_decoder,use_nested_tensor,use_rel_pos,pad_input_image_batch,num_workers,num_batches,num_images,profile_path,memory_path vit_h,16,14532,17,18.861125832244333,53.01910442113876,0.5865236891447146,max-autotune,torch.bfloat16,None,False,False,True,True,True,32,64,1024,None,None 0%| | 0/64 [00:00<?, ?it/s]/home/cdhernandez/local/pytorch/torch/nested/__init__.py:166: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. (Triggered internally at /home/cdhernandez/local/pytorch/aten/src/ATen/NestedTensorImpl.cpp:177.) return _nested.nested_tensor( 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 64/64 [07:08<00:00, 6.70s/it] vit_h,16,14395,17,19.70834741975898,50.73992145061493,0.5875230894143607,max-autotune,torch.bfloat16,dynamic_quant,False,False,True,True,True,32,64,1024,None,None <class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 3.850527899339795 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.3931088875979185 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.3931088875979185 3.190660197287798 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 4.768232116475701 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 3.8598313461989164 shape=(torch.Size([78400, 1280]), torch.Size([3840, 1280]), torch.Size([3840])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> <class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 1.4865157660096884 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 1.8800818361341953 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 1.8800818361341953 1.179535873234272 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 1.7427184619009497 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 1.4965661568567157 shape=(torch.Size([78400, 1280]), torch.Size([1280, 1280]), torch.Size([1280])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQFloatLinearWeight'> <class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 4.215262923389673 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.661373794078827 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.661373794078827 3.485689079388976 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 5.220260447822511 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 4.2220821138471365 shape=(torch.Size([65536, 1280]), torch.Size([5120, 1280]), torch.Size([5120])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> <class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 4.666170105338097 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.113288130611181 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.113288130611181 2.626298717223108 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 4.855024302378297 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 4.674202110618353 shape=(torch.Size([65536, 5120]), torch.Size([1280, 5120]), torch.Size([1280])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> <class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 3.2269158866256475 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 3.7462301552295685 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 3.7462301552295685 2.6572815608233213 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 3.9978391956537966 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 3.2370124012231827 shape=(torch.Size([65536, 1280]), torch.Size([3840, 1280]), torch.Size([3840])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> <class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 1.2530277017503977 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 1.5717314090579748 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 1.5717314090579748 0.9894231799989939 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 1.5166664496064186 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 1.2606457574293017 shape=(torch.Size([65536, 1280]), torch.Size([1280, 1280]), torch.Size([1280])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 0%| | 0/64 [00:00<?, ?it/s]/home/cdhernandez/local/pytorch/torch/nested/__init__.py:166: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. (Triggered internally at /home/cdhernandez/local/pytorch/aten/src/ATen/NestedTensorImpl.cpp:177.) return _nested.nested_tensor( 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 64/64 [02:15<00:00, 2.12s/it] vit_h,16,14463,17,19.76190752324237,50.602402567863464,0.5875653903095147,max-autotune,torch.bfloat16,auto_quant,False,False,True,True,True,32,64,1024,None,None Test Plan: Reviewers: Subscribers: Tasks: Tags: ghstack-source-id: a9134d6c15e38ba393ce201ed883490c3e009afd Pull Request resolved: #114
Merged
HDCharles
added a commit
to pytorch/ao
that referenced
this pull request
Mar 5, 2024
Summary: Adding autoquantization functionality, using hte do_quant api we can test kernel speeds and pick the best quantization type (or no quantization) for each layer. Test Plan: python test/test.py -k "autoquant" also tested on SAM and SDXL (pytorch-labs/segment-anything-fast#114, huggingface/diffusion-fast@176e85f) Reviewers: Subscribers: Tasks: Tags: [ghstack-poisoned]
HDCharles
added a commit
to pytorch/ao
that referenced
this pull request
Mar 5, 2024
Summary: Adding autoquantization functionality, using hte do_quant api we can test kernel speeds and pick the best quantization type (or no quantization) for each layer. Test Plan: python test/test.py -k "autoquant" also tested on SAM and SDXL (pytorch-labs/segment-anything-fast#114, huggingface/diffusion-fast@176e85f) Reviewers: Subscribers: Tasks: Tags: ghstack-source-id: 398609989008c3bdf2c6e27403a3f7966883ba76 Pull Request resolved: #38
Summary: improves runtime by 19.70 -> 19.76 img/sec ❯ one sh run.sh 0%| | 0/64 [00:00<?, ?it/s]/home/cdhernandez/local/pytorch/torch/nested/__init__.py:166: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. (Triggered internally at /home/cdhernandez/local/pytorch/aten/src/ATen/NestedTensorImpl.cpp:177.) return _nested.nested_tensor( 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 64/64 [06:32<00:00, 6.14s/it] sam_model_type,batch_size,memory(MiB),memory(%),img_s(avg),batch_ms(avg)/batch_size,mIoU,use_compile,use_half,compress,epilogue_fusion_first,use_compile_decoder,use_nested_tensor,use_rel_pos,pad_input_image_batch,num_workers,num_batches,num_images,profile_path,memory_path vit_h,16,14532,17,18.861125832244333,53.01910442113876,0.5865236891447146,max-autotune,torch.bfloat16,None,False,False,True,True,True,32,64,1024,None,None 0%| | 0/64 [00:00<?, ?it/s]/home/cdhernandez/local/pytorch/torch/nested/__init__.py:166: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. (Triggered internally at /home/cdhernandez/local/pytorch/aten/src/ATen/NestedTensorImpl.cpp:177.) return _nested.nested_tensor( 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 64/64 [07:08<00:00, 6.70s/it] vit_h,16,14395,17,19.70834741975898,50.73992145061493,0.5875230894143607,max-autotune,torch.bfloat16,dynamic_quant,False,False,True,True,True,32,64,1024,None,None <class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 3.850527899339795 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.3931088875979185 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.3931088875979185 3.190660197287798 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 4.768232116475701 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 3.8598313461989164 shape=(torch.Size([78400, 1280]), torch.Size([3840, 1280]), torch.Size([3840])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> <class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 1.4865157660096884 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 1.8800818361341953 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 1.8800818361341953 1.179535873234272 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 1.7427184619009497 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 1.4965661568567157 shape=(torch.Size([78400, 1280]), torch.Size([1280, 1280]), torch.Size([1280])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQFloatLinearWeight'> <class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 4.215262923389673 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.661373794078827 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.661373794078827 3.485689079388976 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 5.220260447822511 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 4.2220821138471365 shape=(torch.Size([65536, 1280]), torch.Size([5120, 1280]), torch.Size([5120])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> <class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 4.666170105338097 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.113288130611181 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.113288130611181 2.626298717223108 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 4.855024302378297 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 4.674202110618353 shape=(torch.Size([65536, 5120]), torch.Size([1280, 5120]), torch.Size([1280])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> <class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 3.2269158866256475 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 3.7462301552295685 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 3.7462301552295685 2.6572815608233213 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 3.9978391956537966 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 3.2370124012231827 shape=(torch.Size([65536, 1280]), torch.Size([3840, 1280]), torch.Size([3840])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> <class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 1.2530277017503977 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 1.5717314090579748 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 1.5717314090579748 0.9894231799989939 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 1.5166664496064186 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 1.2606457574293017 shape=(torch.Size([65536, 1280]), torch.Size([1280, 1280]), torch.Size([1280])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 0%| | 0/64 [00:00<?, ?it/s]/home/cdhernandez/local/pytorch/torch/nested/__init__.py:166: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. (Triggered internally at /home/cdhernandez/local/pytorch/aten/src/ATen/NestedTensorImpl.cpp:177.) return _nested.nested_tensor( 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 64/64 [02:15<00:00, 2.12s/it] vit_h,16,14463,17,19.76190752324237,50.602402567863464,0.5875653903095147,max-autotune,torch.bfloat16,auto_quant,False,False,True,True,True,32,64,1024,None,None Test Plan: Reviewers: Subscribers: Tasks: Tags: [ghstack-poisoned]
HDCharles
added a commit
that referenced
this pull request
Mar 19, 2024
Summary: improves runtime by 19.70 -> 19.76 img/sec Test Plan: sh run.sh Reviewers: Subscribers: Tasks: Tags: ghstack-source-id: 9c6098eafc46c453878faded078f2ea2bfd3073a Pull Request resolved: #114
Summary: improves runtime by 19.70 -> 19.76 img/sec Test Plan: sh run.sh Reviewers: Subscribers: Tasks: Tags: [ghstack-poisoned]
HDCharles
added a commit
that referenced
this pull request
Mar 19, 2024
Summary: improves runtime by 19.70 -> 19.76 img/sec Test Plan: sh run.sh Reviewers: Subscribers: Tasks: Tags: ghstack-source-id: 9c6098eafc46c453878faded078f2ea2bfd3073a Pull Request resolved: #114
HDCharles
added a commit
to pytorch/ao
that referenced
this pull request
Mar 19, 2024
Summary: Adding autoquantization functionality, using hte do_quant api we can test kernel speeds and pick the best quantization type (or no quantization) for each layer. Test Plan: python test/test.py -k "autoquant" also tested on SAM and SDXL pytorch-labs/segment-anything-fast#114 HDCharles/sdxl-fast@8d9942a Reviewers: Subscribers: Tasks: Tags: [ghstack-poisoned]
HDCharles
added a commit
to pytorch/ao
that referenced
this pull request
Mar 19, 2024
Summary: Adding autoquantization functionality, using hte do_quant api we can test kernel speeds and pick the best quantization type (or no quantization) for each layer. Test Plan: python test/test.py -k "autoquant" also tested on SAM and SDXL pytorch-labs/segment-anything-fast#114 HDCharles/sdxl-fast@8d9942a Reviewers: Subscribers: Tasks: Tags: ghstack-source-id: 0dbb2ffd09a4fcce471af979b039162916591b7a Pull Request resolved: #38
HDCharles
added a commit
to pytorch/ao
that referenced
this pull request
Mar 19, 2024
Summary: Adding autoquantization functionality, using hte do_quant api we can test kernel speeds and pick the best quantization type (or no quantization) for each layer. Test Plan: python test/test.py -k "autoquant" also tested on SAM and SDXL pytorch-labs/segment-anything-fast#114 HDCharles/sdxl-fast@8d9942a Reviewers: Subscribers: Tasks: Tags: [ghstack-poisoned]
HDCharles
added a commit
to pytorch/ao
that referenced
this pull request
Mar 19, 2024
Summary: Adding autoquantization functionality, using hte do_quant api we can test kernel speeds and pick the best quantization type (or no quantization) for each layer. Test Plan: python test/test.py -k "autoquant" also tested on SAM and SDXL pytorch-labs/segment-anything-fast#114 HDCharles/sdxl-fast@8d9942a Reviewers: Subscribers: Tasks: Tags: ghstack-source-id: fddbaf2c203a1745e8a84980f778c45162576cbc Pull Request resolved: #38
HDCharles
added a commit
to pytorch/ao
that referenced
this pull request
Mar 19, 2024
Summary: Adding autoquantization functionality, using hte do_quant api we can test kernel speeds and pick the best quantization type (or no quantization) for each layer. Test Plan: python test/test.py -k "autoquant" also tested on SAM and SDXL pytorch-labs/segment-anything-fast#114 HDCharles/sdxl-fast@8d9942a Reviewers: Subscribers: Tasks: Tags: [ghstack-poisoned]
HDCharles
added a commit
to pytorch/ao
that referenced
this pull request
Mar 19, 2024
Summary: Adding autoquantization functionality, using hte do_quant api we can test kernel speeds and pick the best quantization type (or no quantization) for each layer. Test Plan: python test/test.py -k "autoquant" also tested on SAM and SDXL pytorch-labs/segment-anything-fast#114 HDCharles/sdxl-fast@8d9942a Reviewers: Subscribers: Tasks: Tags: [ghstack-poisoned]
HDCharles
added a commit
to pytorch/ao
that referenced
this pull request
Mar 19, 2024
Summary: Adding autoquantization functionality, using hte do_quant api we can test kernel speeds and pick the best quantization type (or no quantization) for each layer. Test Plan: python test/test.py -k "autoquant" also tested on SAM and SDXL pytorch-labs/segment-anything-fast#114 HDCharles/sdxl-fast@8d9942a Reviewers: Subscribers: Tasks: Tags: ghstack-source-id: f268031a1702302cc6baa5f91328874677a0959b Pull Request resolved: #38
HDCharles
added a commit
to pytorch/ao
that referenced
this pull request
Mar 19, 2024
Summary: Adding autoquantization functionality, using hte do_quant api we can test kernel speeds and pick the best quantization type (or no quantization) for each layer. Test Plan: python test/test.py -k "autoquant" also tested on SAM and SDXL pytorch-labs/segment-anything-fast#114 HDCharles/sdxl-fast@8d9942a Reviewers: Subscribers: Tasks: Tags: Differential Revision: [D55103983](https://our.internmc.facebook.com/intern/diff/D55103983) [ghstack-poisoned]
HDCharles
added a commit
to pytorch/ao
that referenced
this pull request
Mar 19, 2024
Summary: Adding autoquantization functionality, using hte do_quant api we can test kernel speeds and pick the best quantization type (or no quantization) for each layer. Test Plan: python test/test.py -k "autoquant" also tested on SAM and SDXL pytorch-labs/segment-anything-fast#114 HDCharles/sdxl-fast@8d9942a Reviewers: Subscribers: Tasks: Tags: Differential Revision: [D55103983](https://our.internmc.facebook.com/intern/diff/D55103983) [ghstack-poisoned]
HDCharles
added a commit
to pytorch/ao
that referenced
this pull request
Mar 19, 2024
Summary: Adding autoquantization functionality, using hte do_quant api we can test kernel speeds and pick the best quantization type (or no quantization) for each layer. Test Plan: python test/test.py -k "autoquant" also tested on SAM and SDXL pytorch-labs/segment-anything-fast#114 HDCharles/sdxl-fast@8d9942a Reviewers: Subscribers: Tasks: Tags: ghstack-source-id: 94089f74edf54f8e2122e91498b25306d322f3ab Pull Request resolved: #38
HDCharles
added a commit
to pytorch/ao
that referenced
this pull request
Mar 19, 2024
Summary: Adding autoquantization functionality, using hte do_quant api we can test kernel speeds and pick the best quantization type (or no quantization) for each layer. Test Plan: python test/test.py -k "autoquant" also tested on SAM and SDXL pytorch-labs/segment-anything-fast#114 HDCharles/sdxl-fast@8d9942a Reviewers: Subscribers: Tasks: Tags: Differential Revision: [D55103983](https://our.internmc.facebook.com/intern/diff/D55103983) [ghstack-poisoned]
HDCharles
added a commit
to pytorch/ao
that referenced
this pull request
Mar 19, 2024
Summary: Adding autoquantization functionality, using hte do_quant api we can test kernel speeds and pick the best quantization type (or no quantization) for each layer. Test Plan: python test/test.py -k "autoquant" also tested on SAM and SDXL pytorch-labs/segment-anything-fast#114 HDCharles/sdxl-fast@8d9942a Reviewers: Subscribers: Tasks: Tags: Differential Revision: [D55103983](https://our.internmc.facebook.com/intern/diff/D55103983) [ghstack-poisoned]
HDCharles
added a commit
to pytorch/ao
that referenced
this pull request
Mar 19, 2024
Summary: Adding autoquantization functionality, using hte do_quant api we can test kernel speeds and pick the best quantization type (or no quantization) for each layer. Test Plan: python test/test.py -k "autoquant" also tested on SAM and SDXL pytorch-labs/segment-anything-fast#114 HDCharles/sdxl-fast@8d9942a Reviewers: Subscribers: Tasks: Tags: ghstack-source-id: 94089f74edf54f8e2122e91498b25306d322f3ab Pull Request resolved: #38
HDCharles
added a commit
to pytorch/ao
that referenced
this pull request
Mar 19, 2024
Summary: Adding autoquantization functionality, using hte do_quant api we can test kernel speeds and pick the best quantization type (or no quantization) for each layer. Test Plan: python test/test.py -k "autoquant" also tested on SAM and SDXL pytorch-labs/segment-anything-fast#114 HDCharles/sdxl-fast@8d9942a Reviewers: Subscribers: Tasks: Tags: Differential Revision: [D55103983](https://our.internmc.facebook.com/intern/diff/D55103983) [ghstack-poisoned]
HDCharles
added a commit
to pytorch/ao
that referenced
this pull request
Mar 19, 2024
Summary: Adding autoquantization functionality, using hte do_quant api we can test kernel speeds and pick the best quantization type (or no quantization) for each layer. Test Plan: python test/test.py -k "autoquant" also tested on SAM and SDXL pytorch-labs/segment-anything-fast#114 HDCharles/sdxl-fast@8d9942a Reviewers: Subscribers: Tasks: Tags: Differential Revision: [D55103983](https://our.internmc.facebook.com/intern/diff/D55103983) [ghstack-poisoned]
HDCharles
added a commit
to pytorch/ao
that referenced
this pull request
Mar 19, 2024
Summary: Adding autoquantization functionality, using hte do_quant api we can test kernel speeds and pick the best quantization type (or no quantization) for each layer. Test Plan: python test/test.py -k "autoquant" also tested on SAM and SDXL pytorch-labs/segment-anything-fast#114 HDCharles/sdxl-fast@8d9942a Reviewers: Subscribers: Tasks: Tags: ghstack-source-id: 94089f74edf54f8e2122e91498b25306d322f3ab Pull Request resolved: #38
HDCharles
added a commit
to pytorch/ao
that referenced
this pull request
Mar 19, 2024
Summary: Adding autoquantization functionality, using hte do_quant api we can test kernel speeds and pick the best quantization type (or no quantization) for each layer. Test Plan: python test/test.py -k "autoquant" also tested on SAM and SDXL pytorch-labs/segment-anything-fast#114 HDCharles/sdxl-fast@8d9942a Reviewers: Subscribers: Tasks: Tags: Differential Revision: [D55103983](https://our.internmc.facebook.com/intern/diff/D55103983) [ghstack-poisoned]
HDCharles
added a commit
to pytorch/ao
that referenced
this pull request
Mar 19, 2024
Summary: Adding autoquantization functionality, using hte do_quant api we can test kernel speeds and pick the best quantization type (or no quantization) for each layer. Test Plan: python test/test.py -k "autoquant" also tested on SAM and SDXL pytorch-labs/segment-anything-fast#114 HDCharles/sdxl-fast@8d9942a Reviewers: Subscribers: Tasks: Tags: Differential Revision: [D55103983](https://our.internmc.facebook.com/intern/diff/D55103983) [ghstack-poisoned]
HDCharles
added a commit
to pytorch/ao
that referenced
this pull request
Mar 19, 2024
Summary: Adding autoquantization functionality, using hte do_quant api we can test kernel speeds and pick the best quantization type (or no quantization) for each layer. Test Plan: python test/test.py -k "autoquant" also tested on SAM and SDXL pytorch-labs/segment-anything-fast#114 HDCharles/sdxl-fast@8d9942a Reviewers: Subscribers: Tasks: Tags: ghstack-source-id: 37683856743b0c139b87b87c1b2c9acf92a9c15b Pull Request resolved: #38
HDCharles
added a commit
to pytorch/ao
that referenced
this pull request
Mar 25, 2024
Summary: Adding autoquantization functionality, using hte do_quant api we can test kernel speeds and pick the best quantization type (or no quantization) for each layer. Test Plan: python test/test.py -k "autoquant" also tested on SAM and SDXL pytorch-labs/segment-anything-fast#114 HDCharles/sdxl-fast@8d9942a Reviewers: Subscribers: Tasks: Tags: Differential Revision: [D55103983](https://our.internmc.facebook.com/intern/diff/D55103983) [ghstack-poisoned]
HDCharles
added a commit
to pytorch/ao
that referenced
this pull request
Mar 25, 2024
Summary: Adding autoquantization functionality, using hte do_quant api we can test kernel speeds and pick the best quantization type (or no quantization) for each layer. Test Plan: python test/test.py -k "autoquant" also tested on SAM and SDXL pytorch-labs/segment-anything-fast#114 HDCharles/sdxl-fast@8d9942a Reviewers: Subscribers: Tasks: Tags: ghstack-source-id: 3c1199d84d316ae49d664b6a20ebed404734806e Pull Request resolved: #38
HDCharles
added a commit
to pytorch/ao
that referenced
this pull request
Mar 25, 2024
Summary: Adding autoquantization functionality, using hte do_quant api we can test kernel speeds and pick the best quantization type (or no quantization) for each layer. Test Plan: python test/test.py -k "autoquant" also tested on SAM and SDXL pytorch-labs/segment-anything-fast#114 HDCharles/sdxl-fast@8d9942a Reviewers: Subscribers: Tasks: Tags: Differential Revision: [D55103983](https://our.internmc.facebook.com/intern/diff/D55103983) [ghstack-poisoned]
HDCharles
added a commit
to pytorch/ao
that referenced
this pull request
Mar 25, 2024
Summary: Adding autoquantization functionality, using hte do_quant api we can test kernel speeds and pick the best quantization type (or no quantization) for each layer. Test Plan: python test/test.py -k "autoquant" also tested on SAM and SDXL pytorch-labs/segment-anything-fast#114 HDCharles/sdxl-fast@8d9942a Reviewers: Subscribers: Tasks: Tags: [ghstack-poisoned]
Merged
HDCharles
added a commit
to pytorch/ao
that referenced
this pull request
Mar 25, 2024
Summary: Adding autoquantization functionality, using hte do_quant api we can test kernel speeds and pick the best quantization type (or no quantization) for each layer. Test Plan: python test/test.py -k "autoquant" also tested on SAM and SDXL pytorch-labs/segment-anything-fast#114 HDCharles/sdxl-fast@8d9942a Reviewers: Subscribers: Tasks: Tags: ghstack-source-id: 3c1199d84d316ae49d664b6a20ebed404734806e Pull Request resolved: #81
Merged
HDCharles
added a commit
to pytorch/ao
that referenced
this pull request
Mar 25, 2024
Summary: Adding autoquantization functionality, using hte do_quant api we can test kernel speeds and pick the best quantization type (or no quantization) for each layer. Test Plan: python test/test.py -k "autoquant" also tested on SAM and SDXL pytorch-labs/segment-anything-fast#114 HDCharles/sdxl-fast@8d9942a Reviewers: Subscribers: Tasks: Tags: [ghstack-poisoned]
cpuhrsch
pushed a commit
to pytorch/ao
that referenced
this pull request
Apr 1, 2024
Summary: Adding autoquantization functionality, using hte do_quant api we can test kernel speeds and pick the best quantization type (or no quantization) for each layer. Test Plan: python test/test.py -k "autoquant" also tested on SAM and SDXL pytorch-labs/segment-anything-fast#114 HDCharles/sdxl-fast@8d9942a Reviewers: Subscribers: Tasks: Tags: [ghstack-poisoned]
dbyoung18
pushed a commit
to dbyoung18/ao
that referenced
this pull request
Jul 31, 2024
Summary: Adding autoquantization functionality, using hte do_quant api we can test kernel speeds and pick the best quantization type (or no quantization) for each layer. Test Plan: python test/test.py -k "autoquant" also tested on SAM and SDXL pytorch-labs/segment-anything-fast#114 HDCharles/sdxl-fast@8d9942a Reviewers: Subscribers: Tasks: Tags: [ghstack-poisoned]
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Labels
CLA Signed
This label is managed by the Facebook bot. Authors need to sign the CLA before a PR can be reviewed.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Stack from ghstack (oldest at bottom):
Summary:
improves runtime by 19.70 -> 19.76 img/sec
Test Plan: sh run.sh
Reviewers:
Subscribers:
Tasks:
Tags: