Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add Numba implementation of Blockwise #1015

Open
wants to merge 2 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 5 additions & 4 deletions pytensor/link/numba/dispatch/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,15 +2,16 @@
from pytensor.link.numba.dispatch.basic import numba_funcify, numba_typify

# Load dispatch specializations
import pytensor.link.numba.dispatch.scalar
import pytensor.link.numba.dispatch.tensor_basic
import pytensor.link.numba.dispatch.blockwise
import pytensor.link.numba.dispatch.elemwise
import pytensor.link.numba.dispatch.extra_ops
import pytensor.link.numba.dispatch.nlinalg
import pytensor.link.numba.dispatch.random
import pytensor.link.numba.dispatch.elemwise
import pytensor.link.numba.dispatch.scan
import pytensor.link.numba.dispatch.sparse
import pytensor.link.numba.dispatch.scalar
import pytensor.link.numba.dispatch.slinalg
import pytensor.link.numba.dispatch.sparse
import pytensor.link.numba.dispatch.subtensor
import pytensor.link.numba.dispatch.tensor_basic

# isort: on
94 changes: 94 additions & 0 deletions pytensor/link/numba/dispatch/blockwise.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,94 @@
from typing import cast

from numba.core.extending import overload
from numba.np.unsafe.ndarray import to_fixed_tuple

from pytensor.link.numba.dispatch.basic import numba_funcify
from pytensor.link.numba.dispatch.vectorize_codegen import (
_jit_options,
_vectorized,
encode_literals,
store_core_outputs,
)
from pytensor.tensor import TensorVariable, get_vector_length
from pytensor.tensor.blockwise import Blockwise, BlockwiseWithCoreShape


@numba_funcify.register
def numba_funcify_Blockwise(op: BlockwiseWithCoreShape, node, **kwargs):
[blockwise_node] = op.fgraph.apply_nodes
blockwise_op: Blockwise = blockwise_node.op
core_op = blockwise_op.core_op
nin = len(blockwise_node.inputs)
nout = len(blockwise_node.outputs)
if nout > 3:
raise NotImplementedError(

Check warning on line 25 in pytensor/link/numba/dispatch/blockwise.py

View check run for this annotation

Codecov / codecov/patch

pytensor/link/numba/dispatch/blockwise.py#L25

Added line #L25 was not covered by tests
"Current implementation of BlockwiseWithCoreShape does not support more than 3 outputs."
)

core_shapes_len = [get_vector_length(sh) for sh in node.inputs[nin:]]
core_shape_0 = core_shapes_len[0] if nout > 0 else None
core_shape_1 = core_shapes_len[1] if nout > 1 else None
core_shape_2 = core_shapes_len[2] if nout > 2 else None

core_node = blockwise_op._create_dummy_core_node(
cast(tuple[TensorVariable], blockwise_node.inputs)
)
core_op_fn = numba_funcify(
core_op,
node=core_node,
parent_node=node,
fastmath=_jit_options["fastmath"],
**kwargs,
)
core_op_fn = store_core_outputs(core_op_fn, nin=nin, nout=nout)

batch_ndim = blockwise_op.batch_ndim(node)

# numba doesn't support nested literals right now...
input_bc_patterns = encode_literals(
tuple(inp.type.broadcastable[:batch_ndim] for inp in node.inputs)
)
output_bc_patterns = encode_literals(
tuple(out.type.broadcastable[:batch_ndim] for out in node.outputs)
)
output_dtypes = encode_literals(tuple(out.type.dtype for out in node.outputs))
inplace_pattern = encode_literals(())

def blockwise_wrapper(*inputs_and_core_shapes):
inputs, core_shapes = inputs_and_core_shapes[:nin], inputs_and_core_shapes[nin:]

Check warning on line 59 in pytensor/link/numba/dispatch/blockwise.py

View check run for this annotation

Codecov / codecov/patch

pytensor/link/numba/dispatch/blockwise.py#L59

Added line #L59 was not covered by tests
# Appease numba Gods :(
# Secular solution welcomed
if nout == 1:
tuple_core_shapes = (to_fixed_tuple(core_shapes[0], core_shape_0),)

Check warning on line 63 in pytensor/link/numba/dispatch/blockwise.py

View check run for this annotation

Codecov / codecov/patch

pytensor/link/numba/dispatch/blockwise.py#L63

Added line #L63 was not covered by tests
elif nout == 2:
tuple_core_shapes = (

Check warning on line 65 in pytensor/link/numba/dispatch/blockwise.py

View check run for this annotation

Codecov / codecov/patch

pytensor/link/numba/dispatch/blockwise.py#L65

Added line #L65 was not covered by tests
to_fixed_tuple(core_shapes[0], core_shape_0),
to_fixed_tuple(core_shapes[1], core_shape_1),
)
else:
tuple_core_shapes = (

Check warning on line 70 in pytensor/link/numba/dispatch/blockwise.py

View check run for this annotation

Codecov / codecov/patch

pytensor/link/numba/dispatch/blockwise.py#L70

Added line #L70 was not covered by tests
to_fixed_tuple(core_shapes[0], core_shape_0),
to_fixed_tuple(core_shapes[1], core_shape_1),
to_fixed_tuple(core_shapes[2], core_shape_2),
)
Comment on lines +62 to +74
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

If anybody has an idea on how to do this dynamically would be great. Do we have to do string generation 😭?

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Are you opposed to cheesing it?

tuple(to_fixed_tuple(core_shapes[i], core_shape_lens[i]) for i in range(nout))

(I don't have full context)

Copy link
Member Author

@ricardoV94 ricardoV94 Oct 13, 2024

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

numba doesn't support that in this context

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Ewww. Maybe you could try a bunch of eval statements?

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

We would need to go down the string generation as we do for some other Ops (like Scan). But I didn't want to :)

return _vectorized(

Check warning on line 75 in pytensor/link/numba/dispatch/blockwise.py

View check run for this annotation

Codecov / codecov/patch

pytensor/link/numba/dispatch/blockwise.py#L75

Added line #L75 was not covered by tests
core_op_fn,
input_bc_patterns,
output_bc_patterns,
output_dtypes,
inplace_pattern,
(), # constant_inputs
inputs,
tuple_core_shapes,
None, # size
)

def blockwise(*inputs_and_core_shapes):
raise NotImplementedError("Non-jitted BlockwiseWithCoreShape not implemented")

Check warning on line 88 in pytensor/link/numba/dispatch/blockwise.py

View check run for this annotation

Codecov / codecov/patch

pytensor/link/numba/dispatch/blockwise.py#L88

Added line #L88 was not covered by tests

@overload(blockwise, jit_options=_jit_options)
def ov_blockwise(*inputs_and_core_shapes):
return blockwise_wrapper

return blockwise
2 changes: 1 addition & 1 deletion pytensor/link/numba/dispatch/random.py
Original file line number Diff line number Diff line change
Expand Up @@ -388,7 +388,7 @@
return rng, draws

def random(core_shape, rng, size, *dist_params):
pass
raise NotImplementedError("Non-jitted random variable not implemented")

Check warning on line 391 in pytensor/link/numba/dispatch/random.py

View check run for this annotation

Codecov / codecov/patch

pytensor/link/numba/dispatch/random.py#L391

Added line #L391 was not covered by tests

@overload(random, jit_options=_jit_options)
def ov_random(core_shape, rng, size, *dist_params):
Expand Down
37 changes: 34 additions & 3 deletions pytensor/tensor/blockwise.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,8 @@
from pytensor import config
from pytensor.compile.builders import OpFromGraph
from pytensor.gradient import DisconnectedType
from pytensor.graph.basic import Apply, Constant
from pytensor.graph import FunctionGraph
from pytensor.graph.basic import Apply, Constant, ancestors
from pytensor.graph.null_type import NullType
from pytensor.graph.op import Op
from pytensor.graph.replace import (
Expand Down Expand Up @@ -179,15 +180,37 @@ def infer_shape(

batch_shape = broadcast_shape(*batch_shapes, arrays_are_shapes=True)

# Try to extract the core shapes from the core_op
if hasattr(self.core_op, "infer_shape"):
dummy_core_node = self._create_dummy_core_node(node.inputs)
dummy_core_inputs = dummy_core_node.inputs
dummy_fgraph = FunctionGraph(outputs=dummy_core_node.outputs, clone=False)
core_input_shapes = [
input_shape[batch_ndims:] for input_shape in input_shapes
]
core_output_shapes = self.core_op.infer_shape(
dummy_fgraph, dummy_core_node, core_input_shapes
)

out_shapes = []
for output, sig in zip(node.outputs, self.outputs_sig):
for o, (output, sig) in enumerate(zip(node.outputs, self.outputs_sig)):
core_out_shape = []
for i, dim_name in enumerate(sig):
# The output dim is the same as another input dim
if dim_name in core_dims:
core_out_shape.append(core_dims[dim_name])
else:
# TODO: We could try to make use of infer_shape of core_op
if hasattr(self.core_op, "infer_shape"):
# If the input values are needed to compute the dimension length, we can't use the infer_shape
# of the core_node as the value is not constant across batch dims of the Blockwise
core_out_dim = core_output_shapes[o][i]
if not (
set(dummy_core_inputs) & set(ancestors([core_out_dim]))
):
core_out_shape.append(core_out_dim)
continue

# Fallback shape requires evaluating the Blockwise Op
core_out_shape.append(Shape_i(batch_ndims + i)(output))
out_shapes.append((*batch_shape, *core_out_shape))

Expand Down Expand Up @@ -379,3 +402,11 @@ def vectorize_node_fallback(op: Op, node: Apply, *bached_inputs) -> Apply:

class OpWithCoreShape(OpFromGraph):
"""Generalizes an `Op` to include core shape as an additional input."""


class BlockwiseWithCoreShape(OpWithCoreShape):
"""Generalizes a Blockwise `Op` to include a core shape parameter."""

def __str__(self):
[blockwise_node] = self.fgraph.apply_nodes
return f"[{blockwise_node.op!s}]"
1 change: 1 addition & 0 deletions pytensor/tensor/rewriting/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,7 @@
import pytensor.tensor.rewriting.jax
import pytensor.tensor.rewriting.linalg
import pytensor.tensor.rewriting.math
import pytensor.tensor.rewriting.numba
import pytensor.tensor.rewriting.ofg
import pytensor.tensor.rewriting.shape
import pytensor.tensor.rewriting.special
Expand Down
112 changes: 112 additions & 0 deletions pytensor/tensor/rewriting/numba.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,112 @@
from pytensor.compile import optdb
from pytensor.graph import node_rewriter
from pytensor.graph.basic import applys_between
from pytensor.graph.rewriting.basic import out2in
from pytensor.tensor.basic import as_tensor, constant
from pytensor.tensor.blockwise import Blockwise, BlockwiseWithCoreShape
from pytensor.tensor.rewriting.shape import ShapeFeature


@node_rewriter([Blockwise])
def introduce_explicit_core_shape_blockwise(fgraph, node):
"""Introduce the core shape of a Blockwise.

We wrap Blockwise graphs into a BlockwiseWithCoreShape OpFromGraph
that has an extra "non-functional" input that represents the core shape of the Blockwise variable.
This core_shape is used by the numba backend to pre-allocate the output array.

If available, the core shape is extracted from the shape feature of the graph,
which has a higher change of having been simplified, optimized, constant-folded.
If missing, we fall back to the op._supp_shape_from_params method.

This rewrite is required for the numba backend implementation of Blockwise.

Example
-------

.. code-block:: python

import pytensor
import pytensor.tensor as pt

x = pt.tensor("x", shape=(5, None, None))
outs = pt.linalg.svd(x, compute_uv=True)
pytensor.dprint(outs)
# Blockwise{SVD{full_matrices=True, compute_uv=True}, (m,n)->(m,m),(k),(n,n)}.0 [id A]
# └─ x [id B]
# Blockwise{SVD{full_matrices=True, compute_uv=True}, (m,n)->(m,m),(k),(n,n)}.1 [id A]
# └─ ···
# Blockwise{SVD{full_matrices=True, compute_uv=True}, (m,n)->(m,m),(k),(n,n)}.2 [id A]
# └─ ···

# After the rewrite, note the new 3 core shape inputs
fn = pytensor.function([x], outs, mode="NUMBA")
fn.dprint(print_type=False)
# [Blockwise{SVD{full_matrices=True, compute_uv=True}, (m,n)->(m,m),(k),(n,n)}].0 [id A] 6
# ├─ x [id B]
# ├─ MakeVector{dtype='int64'} [id C] 5
# │ ├─ Shape_i{1} [id D] 2
# │ │ └─ x [id B]
# │ └─ Shape_i{1} [id D] 2
# │ └─ ···
# ├─ MakeVector{dtype='int64'} [id E] 4
# │ └─ Minimum [id F] 3
# │ ├─ Shape_i{1} [id D] 2
# │ │ └─ ···
# │ └─ Shape_i{2} [id G] 0
# │ └─ x [id B]
# └─ MakeVector{dtype='int64'} [id H] 1
# ├─ Shape_i{2} [id G] 0
# │ └─ ···
# └─ Shape_i{2} [id G] 0
# └─ ···
# [Blockwise{SVD{full_matrices=True, compute_uv=True}, (m,n)->(m,m),(k),(n,n)}].1 [id A] 6
# └─ ···
# [Blockwise{SVD{full_matrices=True, compute_uv=True}, (m,n)->(m,m),(k),(n,n)}].2 [id A] 6
# └─ ···
"""
if len(node.outputs) > 3:
# Current implementation of BlockwiseWithCoreShape does not support more than 3 outputs.
return None

op: Blockwise = node.op # type: ignore[annotation-unchecked]
batch_ndim = op.batch_ndim(node)

shape_feature: ShapeFeature | None = getattr(fgraph, "shape_feature", None) # type: ignore[annotation-unchecked]
if shape_feature:
core_shapes = [
[shape_feature.get_shape(out, i) for i in range(batch_ndim, out.type.ndim)]
for out in node.outputs
]
else:
input_shapes = [tuple(inp.shape) for inp in node.inputs]
core_shapes = [
out_shape[batch_ndim:]
for out_shape in op.infer_shape(None, node, input_shapes)
]

core_shapes = [
as_tensor(core_shape) if len(core_shape) else constant([], dtype="int64")
for core_shape in core_shapes
]

if any(
isinstance(node.op, Blockwise)
for node in applys_between(node.inputs, core_shapes)
):
# If Blockwise shows up in the shape graph we can't introduce the core shape
return None

return BlockwiseWithCoreShape(
[*node.inputs, *core_shapes],
node.outputs,
destroy_map=op.destroy_map,
)(*node.inputs, *core_shapes, return_list=True)


optdb.register(
introduce_explicit_core_shape_blockwise.__name__,
out2in(introduce_explicit_core_shape_blockwise),
"numba",
position=100,
)
2 changes: 1 addition & 1 deletion tests/link/numba/test_basic.py
Original file line number Diff line number Diff line change
Expand Up @@ -242,7 +242,7 @@ def compare_numba_and_py(
Parameters
----------
fgraph
`FunctionGraph` or inputs to compare.
`FunctionGraph` or tuple(inputs, outputs) to compare.
inputs
Numeric inputs to be passed to the compiled graphs.
assert_fn
Expand Down
72 changes: 72 additions & 0 deletions tests/link/numba/test_blockwise.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,72 @@
import numpy as np
import pytest

from pytensor import function
from pytensor.compile.builders import OpFromGraph
from pytensor.tensor import tensor
from pytensor.tensor.basic import ARange
from pytensor.tensor.blockwise import Blockwise
from pytensor.tensor.nlinalg import SVD, Det
from pytensor.tensor.slinalg import Cholesky, cholesky
from tests.link.numba.test_basic import compare_numba_and_py, numba_mode


# Fails if object mode warning is issued when not expected
pytestmark = pytest.mark.filterwarnings("error")


@pytest.mark.parametrize("shape_opt", [True, False], ids=str)
@pytest.mark.parametrize("core_op", [Det(), Cholesky(), SVD(compute_uv=True)], ids=str)
def test_blockwise(core_op, shape_opt):
x = tensor(shape=(5, None, None))
outs = Blockwise(core_op=core_op)(x, return_list=True)

mode = (
numba_mode.including("ShapeOpt")
if shape_opt
else numba_mode.excluding("ShapeOpt")
)
x_test = np.eye(3) * np.arange(1, 6)[:, None, None]
compare_numba_and_py(
([x], outs),
[x_test],
numba_mode=mode,
eval_obj_mode=False,
)


def test_non_square_blockwise():
"""Test that Op that cannot always be blockwised at runtime fails gracefully."""
x = tensor(shape=(3,), dtype="int64")
out = Blockwise(core_op=ARange(dtype="int64"), signature="(),(),()->(a)")(0, x, 1)

with pytest.warns(UserWarning, match="Numba will use object mode"):
fn = function([x], out, mode="NUMBA")

np.testing.assert_allclose(fn([5, 5, 5]), np.broadcast_to(np.arange(5), (3, 5)))

with pytest.raises(ValueError):
fn([3, 4, 5])


def test_too_many_outputs_blockwise():
"""Current implementation of Blockwise does not support more than 3 outputs."""
x = tensor("x", shape=())
core_op = OpFromGraph([x], [x + i for i in range(4)])

xs = tensor("x", shape=(3,))
outs = Blockwise(core_op=core_op, signature="()->(),(),(),()")(xs)

with pytest.warns(UserWarning, match="Numba will use object mode"):
compare_numba_and_py(([xs], outs), [np.arange(3)])


def test_blockwise_benchmark(benchmark):
x = tensor(shape=(5, 3, 3))
out = cholesky(x)
assert isinstance(out.owner.op, Blockwise)

fn = function([x], out, mode="NUMBA")
x_test = np.eye(3) * np.arange(1, 6)[:, None, None]
fn(x_test) # JIT compile
benchmark(fn, x_test)
Loading
Loading