-
Notifications
You must be signed in to change notification settings - Fork 105
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Implement Blockwise in PyTorch backend
- Loading branch information
1 parent
6f4219a
commit 13cb8e8
Showing
3 changed files
with
86 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,32 @@ | ||
import torch | ||
import torch.compiler | ||
|
||
from pytensor.graph import FunctionGraph | ||
from pytensor.link.pytorch.dispatch import pytorch_funcify | ||
from pytensor.tensor.blockwise import Blockwise | ||
|
||
|
||
@pytorch_funcify.register(Blockwise) | ||
def funcify_Blockwise(op: Blockwise, node, *args, **kwargs): | ||
batched_dims = op.batch_ndim(node) | ||
core_node = op._create_dummy_core_node(node.inputs) | ||
core_fgraph = FunctionGraph(inputs=core_node.inputs, outputs=core_node.outputs) | ||
inner_func = pytorch_funcify(core_fgraph, squeeze_output=len(node.outputs) == 1) | ||
|
||
for _ in range(batched_dims): | ||
inner_func = torch.vmap(inner_func) | ||
|
||
@torch.compiler.disable(recursive=False) | ||
def batcher(*inputs): | ||
op._check_runtime_broadcast(node, inputs) | ||
# broadcast on batched_dims | ||
all_batched_dims = tuple(t.shape[:batched_dims] for t in inputs) | ||
batched_shape = torch.broadcast_shapes(*all_batched_dims) | ||
broadcast_inputs = [ | ||
torch.broadcast_to(i, batched_shape + i.shape[batched_dims:]) | ||
for i in inputs | ||
] | ||
res = inner_func(*broadcast_inputs) | ||
return res | ||
|
||
return batcher |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,53 @@ | ||
import numpy as np | ||
import pytest | ||
|
||
import pytensor | ||
import pytensor.tensor as pt | ||
from pytensor.graph.basic import Apply | ||
from pytensor.graph.op import Op | ||
from pytensor.tensor.blockwise import Blockwise | ||
|
||
|
||
torch = pytest.importorskip("torch") | ||
basic = pytest.importorskip("pytensor.link.pytorch.dispatch.basic") | ||
|
||
|
||
class TestOp(Op): | ||
gufunc_signature = "(m,n),(n,p)->(m,p)" | ||
|
||
def __init__(self, final_shape): | ||
super().__init__() | ||
self.final_shape = final_shape | ||
self.call_shapes = [] | ||
|
||
def make_node(self, *args): | ||
return Apply(self, list(args), [pt.matrix("_", shape=self.final_shape)]) | ||
|
||
def perform(self, *_): | ||
raise RuntimeError("In perform") | ||
|
||
|
||
@basic.pytorch_funcify.register(TestOp) | ||
def evaluate_test_op(op, **_): | ||
@torch.compiler.disable(recursive=False) | ||
def func(a, b): | ||
op.call_shapes.extend(map(torch.Tensor.size, [a, b])) | ||
return a @ b | ||
|
||
return func | ||
|
||
|
||
def test_blockwise_broadcast(): | ||
_x = np.random.rand(5, 1, 2, 3) | ||
_y = np.random.rand(3, 3, 2) | ||
|
||
x = pt.tensor4("x", shape=(5, 1, 2, 3)) | ||
y = pt.tensor3("y", shape=(3, 3, 2)) | ||
op = TestOp((2, 2)) | ||
z = Blockwise(op)(x, y) | ||
|
||
f = pytensor.function([x, y], z, mode="PYTORCH") | ||
res = f(_x, _y) | ||
assert tuple(res.shape) == (5, 3, 2, 2) | ||
np.testing.assert_allclose(res, _x @ _y) | ||
assert op.call_shapes == [(2, 3), (3, 2)] |