-
-
Notifications
You must be signed in to change notification settings - Fork 50
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Co-authored-by: Luciano Paz <[email protected]>
- Loading branch information
1 parent
1fcb0d1
commit 1fab291
Showing
4 changed files
with
300 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,173 @@ | ||
# Copyright 2023 The PyMC Developers | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import numpy as np | ||
import pymc as pm | ||
from pymc.distributions.dist_math import check_parameters, factln, logpow | ||
from pymc.distributions.shape_utils import rv_size_is_none | ||
from pytensor import tensor as pt | ||
from pytensor.tensor.random.op import RandomVariable | ||
|
||
|
||
class GeneralizedPoissonRV(RandomVariable): | ||
name = "generalized_poisson" | ||
ndim_supp = 0 | ||
ndims_params = [0, 0] | ||
dtype = "int64" | ||
_print_name = ("GeneralizedPoisson", "\\operatorname{GeneralizedPoisson}") | ||
|
||
@classmethod | ||
def rng_fn(cls, rng, theta, lam, size): | ||
theta = np.asarray(theta) | ||
lam = np.asarray(lam) | ||
|
||
if size is not None: | ||
dist_size = size | ||
else: | ||
dist_size = np.broadcast_shapes(theta.shape, lam.shape) | ||
|
||
# A mix of 2 algorithms described by Famoye (1997) is used depending on parameter values | ||
# 0: Inverse method, computed on the log scale. Used when lam <= 0. | ||
# 1: Branching method. Used when lambda > 0. | ||
x = np.empty(dist_size) | ||
idxs_mask = np.broadcast_to(lam < 0, dist_size) | ||
if np.any(idxs_mask): | ||
x[idxs_mask] = cls._inverse_rng_fn(rng, theta, lam, dist_size, idxs_mask=idxs_mask)[ | ||
idxs_mask | ||
] | ||
idxs_mask = ~idxs_mask | ||
if np.any(idxs_mask): | ||
x[idxs_mask] = cls._branching_rng_fn(rng, theta, lam, dist_size, idxs_mask=idxs_mask)[ | ||
idxs_mask | ||
] | ||
return x | ||
|
||
@classmethod | ||
def _inverse_rng_fn(cls, rng, theta, lam, dist_size, idxs_mask): | ||
# We handle x/0 and log(0) issues with branching | ||
with np.errstate(divide="ignore", invalid="ignore"): | ||
log_u = np.log(rng.uniform(size=dist_size)) | ||
pos_lam = lam > 0 | ||
abs_log_lam = np.log(np.abs(lam)) | ||
theta_m_lam = theta - lam | ||
log_s = -theta | ||
log_p = log_s.copy() | ||
x_ = 0 | ||
x = np.zeros(dist_size) | ||
below_cutpoint = log_s < log_u | ||
while np.any(below_cutpoint[idxs_mask]): | ||
x_ += 1 | ||
x[below_cutpoint] += 1 | ||
log_c = np.log(theta_m_lam + lam * x_) | ||
# Compute log(1 + lam / C) | ||
log1p_lam_m_C = np.where( | ||
pos_lam, | ||
np.log1p(np.exp(abs_log_lam - log_c)), | ||
pm.math.log1mexp_numpy(abs_log_lam - log_c, negative_input=True), | ||
) | ||
log_p = log_c + log1p_lam_m_C * (x_ - 1) + log_p - np.log(x_) - lam | ||
log_s = np.logaddexp(log_s, log_p) | ||
below_cutpoint = log_s < log_u | ||
return x | ||
|
||
@classmethod | ||
def _branching_rng_fn(cls, rng, theta, lam, dist_size, idxs_mask): | ||
lam_ = np.abs(lam) # This algorithm is only valid for positive lam | ||
y = rng.poisson(theta, size=dist_size) | ||
x = y.copy() | ||
higher_than_zero = y > 0 | ||
while np.any(higher_than_zero[idxs_mask]): | ||
y = rng.poisson(lam_ * y) | ||
x[higher_than_zero] = x[higher_than_zero] + y[higher_than_zero] | ||
higher_than_zero = y > 0 | ||
return x | ||
|
||
|
||
generalized_poisson = GeneralizedPoissonRV() | ||
|
||
|
||
class GeneralizedPoisson(pm.distributions.Discrete): | ||
R""" | ||
Generalized Poisson. | ||
Used to model count data that can be either overdispersed or underdispersed. | ||
Offers greater flexibility than the standard Poisson which assumes equidispersion, | ||
where the mean is equal to the variance. | ||
The pmf of this distribution is | ||
.. math:: f(x \mid \mu, \lambda) = | ||
\frac{\mu (\mu + \lambda x)^{x-1} e^{-\mu - \lambda x}}{x!} | ||
======== ====================================== | ||
Support :math:`x \in \mathbb{N}_0` | ||
Mean :math:`\frac{\mu}{1 - \lambda}` | ||
Variance :math:`\frac{\mu}{(1 - \lambda)^3}` | ||
======== ====================================== | ||
Parameters | ||
---------- | ||
mu : tensor_like of float | ||
Mean parameter (mu > 0). | ||
lam : tensor_like of float | ||
Dispersion parameter (max(-1, -mu/4) <= lam <= 1). | ||
Notes | ||
----- | ||
When lam = 0, the Generalized Poisson reduces to the standard Poisson with the same mu. | ||
When lam < 0, the mean is greater than the variance (underdispersion). | ||
When lam > 0, the mean is less than the variance (overdispersion). | ||
References | ||
---------- | ||
The PMF is taken from [1] and the random generator function is adapted from [2]. | ||
.. [1] Consul, PoC, and Felix Famoye. "Generalized Poisson regression model." | ||
Communications in Statistics-Theory and Methods 21.1 (1992): 89-109. | ||
.. [2] Famoye, Felix. "Generalized Poisson random variate generation." American | ||
Journal of Mathematical and Management Sciences 17.3-4 (1997): 219-237. | ||
""" | ||
|
||
rv_op = generalized_poisson | ||
|
||
@classmethod | ||
def dist(cls, mu, lam, **kwargs): | ||
mu = pt.as_tensor_variable(mu) | ||
lam = pt.as_tensor_variable(lam) | ||
return super().dist([mu, lam], **kwargs) | ||
|
||
def moment(rv, size, mu, lam): | ||
mean = pt.floor(mu / (1 - lam)) | ||
if not rv_size_is_none(size): | ||
mean = pt.full(size, mean) | ||
return mean | ||
|
||
def logp(value, mu, lam): | ||
mu_lam_value = mu + lam * value | ||
logprob = np.log(mu) + logpow(mu_lam_value, value - 1) - mu_lam_value - factln(value) | ||
|
||
# Probability is 0 when value > m, where m is the largest positive integer for | ||
# which mu + m * lam > 0 (when lam < 0). | ||
logprob = pt.switch( | ||
pt.or_( | ||
mu_lam_value < 0, | ||
value < 0, | ||
), | ||
-np.inf, | ||
logprob, | ||
) | ||
|
||
return check_parameters( | ||
logprob, | ||
0 < mu, | ||
pt.abs(lam) <= 1, | ||
(-mu / 4) <= lam, | ||
msg="0 < mu, max(-1, -mu/4)) <= lam <= 1", | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,120 @@ | ||
# Copyright 2023 The PyMC Developers | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
import numpy as np | ||
import pymc as pm | ||
import pytensor | ||
import pytensor.tensor as pt | ||
import pytest | ||
import scipy.stats | ||
from pymc.logprob.utils import ParameterValueError | ||
from pymc.testing import ( | ||
BaseTestDistributionRandom, | ||
Domain, | ||
Rplus, | ||
assert_moment_is_expected, | ||
discrete_random_tester, | ||
) | ||
from pytensor import config | ||
|
||
from pymc_experimental.distributions import GeneralizedPoisson | ||
|
||
|
||
class TestGeneralizedPoisson: | ||
class TestRandomVariable(BaseTestDistributionRandom): | ||
pymc_dist = GeneralizedPoisson | ||
pymc_dist_params = {"mu": 4.0, "lam": 1.0} | ||
expected_rv_op_params = {"mu": 4.0, "lam": 1.0} | ||
tests_to_run = [ | ||
"check_pymc_params_match_rv_op", | ||
"check_rv_size", | ||
] | ||
|
||
def test_random_matches_poisson(self): | ||
discrete_random_tester( | ||
dist=self.pymc_dist, | ||
paramdomains={"mu": Rplus, "lam": Domain([0], edges=(None, None))}, | ||
ref_rand=lambda mu, lam, size: scipy.stats.poisson.rvs(mu, size=size), | ||
) | ||
|
||
@pytest.mark.parametrize("mu", (2.5, 20, 50)) | ||
def test_random_lam_expected_moments(self, mu): | ||
lam = np.array([-0.9, -0.7, -0.2, 0, 0.2, 0.7, 0.9]) | ||
dist = self.pymc_dist.dist(mu=mu, lam=lam, size=(10_000, len(lam))) | ||
draws = dist.eval() | ||
|
||
expected_mean = mu / (1 - lam) | ||
np.testing.assert_allclose(draws.mean(0), expected_mean, rtol=1e-1) | ||
|
||
expected_std = np.sqrt(mu / (1 - lam) ** 3) | ||
np.testing.assert_allclose(draws.std(0), expected_std, rtol=1e-1) | ||
|
||
def test_logp_matches_poisson(self): | ||
# We are only checking this distribution for lambda=0 where it's equivalent to Poisson. | ||
mu = pt.scalar("mu") | ||
lam = pt.scalar("lam") | ||
value = pt.vector("value", dtype="int64") | ||
|
||
logp = pm.logp(GeneralizedPoisson.dist(mu, lam), value) | ||
logp_fn = pytensor.function([value, mu, lam], logp) | ||
|
||
test_value = np.array([0, 1, 2, 30]) | ||
for test_mu in (0.01, 0.1, 0.9, 1, 1.5, 20, 100): | ||
np.testing.assert_allclose( | ||
logp_fn(test_value, test_mu, lam=0), | ||
scipy.stats.poisson.logpmf(test_value, test_mu), | ||
rtol=1e-7 if config.floatX == "float64" else 1e-5, | ||
) | ||
|
||
# Check out-of-bounds values | ||
value = pt.scalar("value") | ||
logp = pm.logp(GeneralizedPoisson.dist(mu, lam), value) | ||
logp_fn = pytensor.function([value, mu, lam], logp) | ||
|
||
logp_fn(-1, mu=5, lam=0) == -np.inf | ||
logp_fn(9, mu=5, lam=-1) == -np.inf | ||
|
||
# Check mu/lam restrictions | ||
with pytest.raises(ParameterValueError): | ||
logp_fn(1, mu=1, lam=2) | ||
|
||
with pytest.raises(ParameterValueError): | ||
logp_fn(1, mu=0, lam=0) | ||
|
||
with pytest.raises(ParameterValueError): | ||
logp_fn(1, mu=1, lam=-1) | ||
|
||
def test_logp_lam_expected_moments(self): | ||
mu = 30 | ||
lam = np.array([-0.9, -0.7, -0.2, 0, 0.2, 0.7, 0.9]) | ||
with pm.Model(): | ||
x = GeneralizedPoisson("x", mu=mu, lam=lam) | ||
trace = pm.sample(chains=1, draws=10_000, random_seed=96).posterior | ||
|
||
expected_mean = mu / (1 - lam) | ||
np.testing.assert_allclose(trace["x"].mean(("chain", "draw")), expected_mean, rtol=1e-1) | ||
|
||
expected_std = np.sqrt(mu / (1 - lam) ** 3) | ||
np.testing.assert_allclose(trace["x"].std(("chain", "draw")), expected_std, rtol=1e-1) | ||
|
||
@pytest.mark.parametrize( | ||
"mu, lam, size, expected", | ||
[ | ||
(50, [-0.6, 0, 0.6], None, np.floor(50 / (1 - np.array([-0.6, 0, 0.6])))), | ||
([5, 50], -0.1, (4, 2), np.full((4, 2), np.floor(np.array([5, 50]) / 1.1))), | ||
], | ||
) | ||
def test_moment(self, mu, lam, size, expected): | ||
with pm.Model() as model: | ||
GeneralizedPoisson("x", mu=mu, lam=lam, size=size) | ||
assert_moment_is_expected(model, expected) |