Skip to content

Commit

Permalink
changed references & added whatsnew
Browse files Browse the repository at this point in the history
  • Loading branch information
max-sixty committed Oct 21, 2019
1 parent 514219e commit 05e8d72
Show file tree
Hide file tree
Showing 10 changed files with 34 additions and 30 deletions.
2 changes: 1 addition & 1 deletion doc/examples/multidimensional-coords.rst
Original file line number Diff line number Diff line change
Expand Up @@ -107,7 +107,7 @@ function to specify the output coordinates of the group.
lat_center = np.arange(1, 90, 2)
# group according to those bins and take the mean
Tair_lat_mean = (ds.Tair.groupby_bins('xc', lat_bins, labels=lat_center)
.mean(xr.ALL_DIMS))
.mean(...))
# plot the result
@savefig xarray_multidimensional_coords_14_1.png width=5in
Tair_lat_mean.plot();
Expand Down
10 changes: 5 additions & 5 deletions doc/groupby.rst
Original file line number Diff line number Diff line change
Expand Up @@ -116,7 +116,7 @@ dimensions *other than* the provided one:

.. ipython:: python
ds.groupby('x').std(xr.ALL_DIMS)
ds.groupby('x').std(...)
First and last
~~~~~~~~~~~~~~
Expand All @@ -127,7 +127,7 @@ values for group along the grouped dimension:

.. ipython:: python
ds.groupby('letters').first(xr.ALL_DIMS)
ds.groupby('letters').first(...)
By default, they skip missing values (control this with ``skipna``).

Expand All @@ -142,7 +142,7 @@ coordinates. For example:

.. ipython:: python
alt = arr.groupby('letters').mean(xr.ALL_DIMS)
alt = arr.groupby('letters').mean(...)
alt
ds.groupby('letters') - alt
Expand Down Expand Up @@ -195,7 +195,7 @@ __ http://cfconventions.org/cf-conventions/v1.6.0/cf-conventions.html#_two_dimen
'lat': (['ny','nx'], [[10,10],[20,20]] ),},
dims=['ny','nx'])
da
da.groupby('lon').sum(xr.ALL_DIMS)
da.groupby('lon').sum(...)
da.groupby('lon').apply(lambda x: x - x.mean(), shortcut=False)
Because multidimensional groups have the ability to generate a very large
Expand All @@ -213,4 +213,4 @@ applying your function, and then unstacking the result:
.. ipython:: python
stacked = da.stack(gridcell=['ny', 'nx'])
stacked.groupby('gridcell').sum(xr.ALL_DIMS).unstack('gridcell')
stacked.groupby('gridcell').sum(...).unstack('gridcell')
5 changes: 5 additions & 0 deletions doc/whats-new.rst
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,11 @@ v0.14.1 (unreleased)

New Features
~~~~~~~~~~~~
- Changed `xr.ALL_DIMS` to equal python's `Ellipsis` (`...`), and changed internal usages to use
`...` directly. As before, you can use this to instruct a `groupby` operation
to reduce over all dimensions. While we have no plans to remove `xr.ALL_DIMS`, we suggest
using `...`.
By `Maximilian Roos <https://github.com/max-sixty>`_
- Added integration tests against `pint <https://pint.readthedocs.io/>`_.
(:pull:`3238`) by `Justus Magin <https://github.com/keewis>`_.

Expand Down
5 changes: 2 additions & 3 deletions xarray/core/dataset.py
Original file line number Diff line number Diff line change
Expand Up @@ -47,7 +47,6 @@
)
from .alignment import _broadcast_helper, _get_broadcast_dims_map_common_coords, align
from .common import (
ALL_DIMS,
DataWithCoords,
ImplementsDatasetReduce,
_contains_datetime_like_objects,
Expand Down Expand Up @@ -4032,7 +4031,7 @@ def reduce(
Dataset with this object's DataArrays replaced with new DataArrays
of summarized data and the indicated dimension(s) removed.
"""
if dim is None or dim is ALL_DIMS:
if dim is None or dim is ...:
dims = set(self.dims)
elif isinstance(dim, str) or not isinstance(dim, Iterable):
dims = {dim}
Expand Down Expand Up @@ -4997,7 +4996,7 @@ def quantile(

if isinstance(dim, str):
dims = {dim}
elif dim is None or dim is ALL_DIMS:
elif dim in [None, ...]:
dims = set(self.dims)
else:
dims = set(dim)
Expand Down
16 changes: 8 additions & 8 deletions xarray/core/groupby.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@

from . import dtypes, duck_array_ops, nputils, ops
from .arithmetic import SupportsArithmetic
from .common import ALL_DIMS, ImplementsArrayReduce, ImplementsDatasetReduce
from .common import ImplementsArrayReduce, ImplementsDatasetReduce
from .concat import concat
from .formatting import format_array_flat
from .options import _get_keep_attrs
Expand Down Expand Up @@ -712,7 +712,7 @@ def quantile(self, q, dim=None, interpolation="linear", keep_attrs=None):
q : float in range of [0,1] (or sequence of floats)
Quantile to compute, which must be between 0 and 1
inclusive.
dim : xarray.ALL_DIMS (or `...`), str or sequence of str, optional
dim : `...`, str or sequence of str, optional
Dimension(s) over which to apply quantile.
Defaults to the grouped dimension.
interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'}
Expand Down Expand Up @@ -769,7 +769,7 @@ def reduce(
Function which can be called in the form
`func(x, axis=axis, **kwargs)` to return the result of collapsing
an np.ndarray over an integer valued axis.
dim : xarray.ALL_DIMS (or `...`), str or sequence of str, optional
dim : `...`, str or sequence of str, optional
Dimension(s) over which to apply `func`.
axis : int or sequence of int, optional
Axis(es) over which to apply `func`. Only one of the 'dimension'
Expand All @@ -794,9 +794,9 @@ def reduce(
if keep_attrs is None:
keep_attrs = _get_keep_attrs(default=False)

if dim is not ALL_DIMS and dim not in self.dims:
if dim is not ... and dim not in self.dims:
raise ValueError(
"cannot reduce over dimension %r. expected either xarray.ALL_DIMS (or `...`) to reduce over all dimensions or one or more of %r."
"cannot reduce over dimension %r. expected either `...` to reduce over all dimensions or one or more of %r."
% (dim, self.dims)
)

Expand Down Expand Up @@ -867,7 +867,7 @@ def reduce(self, func, dim=None, keep_attrs=None, **kwargs):
Function which can be called in the form
`func(x, axis=axis, **kwargs)` to return the result of collapsing
an np.ndarray over an integer valued axis.
dim : xarray.ALL_DIMS (or `...`), str or sequence of str, optional
dim : `...`, str or sequence of str, optional
Dimension(s) over which to apply `func`.
axis : int or sequence of int, optional
Axis(es) over which to apply `func`. Only one of the 'dimension'
Expand Down Expand Up @@ -895,9 +895,9 @@ def reduce(self, func, dim=None, keep_attrs=None, **kwargs):
def reduce_dataset(ds):
return ds.reduce(func, dim, keep_attrs, **kwargs)

if dim is not ALL_DIMS and dim not in self.dims:
if dim is not ... and dim not in self.dims:
raise ValueError(
"cannot reduce over dimension %r. expected either xarray.ALL_DIMS (or `...`) to reduce over all dimensions or one or more of %r."
"cannot reduce over dimension %r. expected either `...` to reduce over all dimensions or one or more of %r."
% (dim, self.dims)
)

Expand Down
2 changes: 1 addition & 1 deletion xarray/core/variable.py
Original file line number Diff line number Diff line change
Expand Up @@ -1450,7 +1450,7 @@ def reduce(
Array with summarized data and the indicated dimension(s)
removed.
"""
if dim is common.ALL_DIMS:
if dim == ...:
dim = None
if dim is not None and axis is not None:
raise ValueError("cannot supply both 'axis' and 'dim' arguments")
Expand Down
4 changes: 2 additions & 2 deletions xarray/tests/test_dask.py
Original file line number Diff line number Diff line change
Expand Up @@ -435,8 +435,8 @@ def test_groupby(self):
u = self.eager_array
v = self.lazy_array

expected = u.groupby("x").mean(xr.ALL_DIMS)
actual = v.groupby("x").mean(xr.ALL_DIMS)
expected = u.groupby("x").mean(...)
actual = v.groupby("x").mean(...)
self.assertLazyAndAllClose(expected, actual)

def test_groupby_first(self):
Expand Down
6 changes: 3 additions & 3 deletions xarray/tests/test_groupby.py
Original file line number Diff line number Diff line change
Expand Up @@ -147,11 +147,11 @@ def test_da_groupby_quantile():
[("x", [1, 1, 1, 2, 2]), ("y", [0, 0, 1])],
)

actual_x = array.groupby("x").quantile(0, dim=xr.ALL_DIMS)
actual_x = array.groupby("x").quantile(0, dim=...)
expected_x = xr.DataArray([1, 4], [("x", [1, 2])])
assert_identical(expected_x, actual_x)

actual_y = array.groupby("y").quantile(0, dim=xr.ALL_DIMS)
actual_y = array.groupby("y").quantile(0, dim=...)
expected_y = xr.DataArray([1, 22], [("y", [0, 1])])
assert_identical(expected_y, actual_y)

Expand All @@ -177,7 +177,7 @@ def test_da_groupby_quantile():
)
g = foo.groupby(foo.time.dt.month)

actual = g.quantile(0, dim=xr.ALL_DIMS)
actual = g.quantile(0, dim=...)
expected = xr.DataArray(
[
0.0,
Expand Down
6 changes: 3 additions & 3 deletions xarray/tests/test_plot.py
Original file line number Diff line number Diff line change
Expand Up @@ -417,7 +417,7 @@ def test_convenient_facetgrid_4d(self):

def test_coord_with_interval(self):
bins = [-1, 0, 1, 2]
self.darray.groupby_bins("dim_0", bins).mean(xr.ALL_DIMS).plot()
self.darray.groupby_bins("dim_0", bins).mean(...).plot()


class TestPlot1D(PlotTestCase):
Expand Down Expand Up @@ -502,7 +502,7 @@ def test_step(self):

def test_coord_with_interval_step(self):
bins = [-1, 0, 1, 2]
self.darray.groupby_bins("dim_0", bins).mean(xr.ALL_DIMS).plot.step()
self.darray.groupby_bins("dim_0", bins).mean(...).plot.step()
assert len(plt.gca().lines[0].get_xdata()) == ((len(bins) - 1) * 2)


Expand Down Expand Up @@ -544,7 +544,7 @@ def test_plot_nans(self):
def test_hist_coord_with_interval(self):
(
self.darray.groupby_bins("dim_0", [-1, 0, 1, 2])
.mean(xr.ALL_DIMS)
.mean(...)
.plot.hist(range=(-1, 2))
)

Expand Down
8 changes: 4 additions & 4 deletions xarray/tests/test_sparse.py
Original file line number Diff line number Diff line change
Expand Up @@ -756,8 +756,8 @@ def test_dot(self):
def test_groupby(self):
x1 = self.ds_xr
x2 = self.sp_xr
m1 = x1.groupby("x").mean(xr.ALL_DIMS)
m2 = x2.groupby("x").mean(xr.ALL_DIMS)
m1 = x1.groupby("x").mean(...)
m2 = x2.groupby("x").mean(...)
assert isinstance(m2.data, sparse.SparseArray)
assert np.allclose(m1.data, m2.data.todense())

Expand All @@ -772,8 +772,8 @@ def test_groupby_first(self):
def test_groupby_bins(self):
x1 = self.ds_xr
x2 = self.sp_xr
m1 = x1.groupby_bins("x", bins=[0, 3, 7, 10]).sum(xr.ALL_DIMS)
m2 = x2.groupby_bins("x", bins=[0, 3, 7, 10]).sum(xr.ALL_DIMS)
m1 = x1.groupby_bins("x", bins=[0, 3, 7, 10]).sum(...)
m2 = x2.groupby_bins("x", bins=[0, 3, 7, 10]).sum(...)
assert isinstance(m2.data, sparse.SparseArray)
assert np.allclose(m1.data, m2.data.todense())

Expand Down

0 comments on commit 05e8d72

Please sign in to comment.