This is the official TensorFlow implementation of AMPA-Net [Nanyu Li, Charles C. Zhou, AMPA-Net: Optimization-Inspired Attention Neural Network for Deep Compressed Sensing, In the IEEE 20th International Conference on Communication Technology (ICCT) oral] which can be downloaded from https://arxiv.org/abs/2010.06907
Compressed sensing (CS) is a challenging problem in image processing due to reconstructing an almost complete image from a limited measurement. To achieve fast and accurate CS reconstruction, we synthesize the advantages of two well-known methods (neural network and optimization algorithm) to propose a novel optimization-inspired neural network which dubbed AMP-Net. AMP-Net realizes the fusion of the Approximate Message Passing (AMP) algorithm and neural network. All of its parameters are learned automatically. Furthermore, we propose an AMPA-Net which uses three attention networks to improve the representation ability of AMP-Net. Finally, We demonstrate the effectiveness of AMP-Net and AMPA-Net on four standard CS reconstruction benchmark data sets.
-
The code is tested using Tensorflow 1.0 under Ubuntu 16.04 with Python 2.7.
-
Recommend Environment: Anaconda
Download Training_Data_Img91.mat from:https://pan.baidu.com/s/1UgRuDbIXCNZOEuedVlK8bA?pwd=cq1b code is cq1b and cp it into this folder
Download Urban-100 from:https://pan.baidu.com/s/1AUNWfVx8Jy12D12yJClWYg?pwd=rr3q code is rr3q and cp it into this folder
Download BSDS-100 from:https://pan.baidu.com/s/1KwpRYlp_7SjphA_Vc2LMiA?pwd=kbyw code is kbyw and cp it into this folder
Python trainn.py
Our model achieves the following performance on Set11, BSD68, BSDS100, Urban100
Model name | cs=50% | cs=40% | cs=25% | cs=10% | cs=4% | cs=1% |
---|---|---|---|---|---|---|
BM3D-AMP | 34.11 | 32.79 | 27.87 | 22.12 | 17.32 | 4.91 |
LD-AMP | 35.92 | 33.56 | 28.46 | 22.64 | 18.40 | 5.21 |
Ad-Recon-Net | 34.21 | 32.72 | 30.80 | 27.53 | 23.22 | 20.33 |
FGMN | 23.87 | 21.27 | ||||
Full-Conv | 32.69 | 28.30 | 21.27 | |||
DR2-Net | 32.40 | 31.20 | 28.66 | 24.71 | 20.08 | 17.44 |
ISTA-Net | 37.43 | 35.36 | 31.53 | 25.80 | 21.23 | 17.30 |
ISTA-NetPlus | 38.07 | 36.06 | 32.57 | 26.64 | 21.31 | 17.34 |
AMP-Net | 39.52 | 37.13 | 33.60 | 28.47 | 24.21 | 20.48 |
AMPA-Net | 40.32 | 38.27 | 34.61 | 29.30 | 24.95 | 21.59 |
Model name | cs=50% | cs=40% | cs=25% | cs=10% | cs=4% | cs=1% |
---|---|---|---|---|---|---|
LD-AMP | 31.22 | 30.12 | 22.79 | 20.11 | 12.02 | 3.50 |
Ad-Recon-Net | 29.94 | 28.82 | 25.02 | 25.45 | 22.28 | 19.68 |
ISTA-NetPlus | 34.01 | 32.21 | 29.21 | 25.33 | 22.17 | 19.50 |
AMP-Net | 35.02 | 33.10 | 30.25 | 26.92 | 23.77 | 20.85 |
AMPA-Net | 36.33 | 34.41 | 31.38 | 27.58 | 24.90 | 21.99 |
Model name | cs=50% | cs=40% | cs=25% | cs=10% | cs=4% | cs=1% |
---|---|---|---|---|---|---|
LD-AMP | 30.81 | 29.57 | 22.46 | 19.64 | 10.40 | 3.21 |
Ad-Recon-Net | 29.21 | 28.12 | 24.80 | 25.13 | 22.22 | 19.35 |
ISTA-NetPlus | 33.64 | 31.83 | 29.00 | 25.08 | 22.10 | 19.17 |
AMP-Net | 34.21 | 32.13 | 29.59 | 26.87 | 23.21 | 19.48 |
AMPA-Net | 35.95 | 34.03 | 31.01 | 27.29 | 24.75 | 21.62 |
Model name | cs=50% | cs=40% | cs=25% | cs=10% | cs=4% | cs=1% |
---|---|---|---|---|---|---|
LD-AMP | 30.41 | 29.12 | 22.02 | 17.14 | 8.42 | 1.31 |
Ad-Recon-Net | 29.15 | 27.90 | 24.20 | 23.13 | 19.22 | 16.82 |
ISTA-NetPlus | 33.94 | 31.96 | 28.32 | 23.44 | 19.41 | 16.47 |
AMP-Net | 34.08 | 31.95 | 29.02 | 26.20 | 20.01 | 16.88 |
AMPA-Net | 35.86 | 33.92 | 30.49 | 25.76 | 22.40 | 18.86 |
Email: [email protected]
MIT