Skip to content

Example πŸ““ Jupyter notebooks that demonstrate how to build, train, and deploy machine learning models using 🧠 Amazon SageMaker.

License

Notifications You must be signed in to change notification settings

projecte-aina/amazon-sagemaker-examples

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

12 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

SageMaker

Amazon SageMaker Examples

Example Jupyter notebooks that demonstrate how to build, train, and deploy machine learning models using Amazon SageMaker.

πŸ“š Background

Amazon SageMaker is a fully managed service for data science and machine learning (ML) workflows. You can use Amazon SageMaker to simplify the process of building, training, and deploying ML models.

The SageMaker example notebooks are Jupyter notebooks that demonstrate the usage of Amazon SageMaker.

The Sagemaker Example Community repository are additional notebooks, beyond those critical for showcasing key SageMaker functionality, can be shared and explored by the commmunity.

πŸ› οΈ Setup

The quickest setup to run example notebooks includes:

They can be accessed by cloning this repo inside Jupyter or just uploading/copying the example.

Although most examples utilize key Amazon SageMaker functionality like distributed, managed training or real-time hosted endpoints, these notebooks can be run outside of Amazon SageMaker Notebook Instances with minimal modification (updating IAM role definition and installing the necessary libraries).

πŸ““ Examples

Inference

Fine-tunnig

  • Aguila 7b fine-tunning with instruction dataset shows how to fine-tune the falcon 7B aguila model projecte-aina/aguila-7b, using an instructional dataset (in this case an example from the InstructCat collection) with a g5 instance from Amazon Sagemaker.

License

Apache-2.0 license

Funding

This work is funded by the Generalitat de Catalunya within the framework of Projecte AINA.

Generalitat logo

About

Example πŸ““ Jupyter notebooks that demonstrate how to build, train, and deploy machine learning models using 🧠 Amazon SageMaker.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published