Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update parameter_sets.py docstring #4

Closed
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
107 changes: 62 additions & 45 deletions pybamm/parameters/parameter_sets.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,59 +6,76 @@
paper in the file "pybamm/CITATIONS.txt". To see which parameter sets have been used in
your simulation, add the line "pybamm.print_citations()" to your script.

Lead-acid parameter sets
------------------------
* Sulzer2019 :
Valentin Sulzer, S. Jon Chapman, Colin P. Please, David A. Howey, and Charles W.
Monroe. Faster Lead-Acid Battery Simulations from Porous-Electrode Theory: Part
I. Physical Model. Journal of The Electrochemical Society, 166(12):A2363–A2371,
2019. doi:10.1149/2.0301910jes.

Lithium-ion parameter sets
--------------------------
* Ai2020 :
Weilong Ai, Ludwig Kraft, Johannes Sturm, Andreas Jossen, and Billy Wu.
Electrochemical thermal-mechanical modelling of stress inhomogeneity in
lithium-ion pouch cells. Journal of The Electrochemical Society, 167(1):013512,
2019. doi:10.1149/2.0122001JES.
* Chen2020 :
C.-H. Chen, F. Brosa Planella, K. O’Regan, D. Gastol, W. D. Widanage, and E.
Kendrick. "Development of Experimental Techniques for Parameterization of
Multi-scale Lithium-ion Battery Models." Journal of the Electrochemical Society,
167(8), 080534 (2020).
Chang-Hui Chen, Ferran Brosa Planella, Kieran O'Regan, Dominika Gastol, W.
Dhammika Widanage, and Emma Kendrick. Development of Experimental Techniques for
Parameterization of Multi-scale Lithium-ion Battery Models. Journal of The
Electrochemical Society, 167(8):080534, 2020. doi:10.1149/1945-7111/ab9050.
* Chen2020_plating :
Chang-Hui Chen, Ferran Brosa Planella, Kieran O'Regan, Dominika Gastol, W.
Dhammika Widanage, and Emma Kendrick. Development of Experimental Techniques for
Parameterization of Multi-scale Lithium-ion Battery Models. Journal of The
Electrochemical Society, 167(8):080534, 2020. doi:10.1149/1945-7111/ab9050.
* Ecker2015 :
M. Ecker, T. K. D. Tran, P. Dechent, S. Käbitz, A. Warnecke, and D. U. Sauer.
"Parameterization of a Physico-Chemical Model of a Lithium-Ion Battery. I.
Determination of Parameters." Journal of the Electrochemical Society, 162(9),
A1836-A1848 (2015).
Madeleine Ecker, Stefan Käbitz, Izaro Laresgoiti, and Dirk Uwe Sauer.
Parameterization of a Physico-Chemical Model of a Lithium-Ion Battery: II. Model
Validation. Journal of The Electrochemical Society, 162(9):A1849–A1857, 2015.
doi:10.1149/2.0541509jes.Madeleine Ecker, Thi Kim Dung Tran, Philipp Dechent,
Stefan Käbitz, Alexander Warnecke, and Dirk Uwe Sauer. Parameterization of a
Physico-Chemical Model of a Lithium-Ion Battery: I. Determination of Parameters.
Journal of the Electrochemical Society, 162(9):A1836–A1848, 2015.
doi:10.1149/2.0551509jes.Giles Richardson, Ivan Korotkin, Rahifa Ranom, Michael
Castle, and Jamie M. Foster. Generalised single particle models for high-rate
operation of graded lithium-ion electrodes: systematic derivation and
validation. Electrochimica Acta, 339:135862, 2020.
doi:10.1016/j.electacta.2020.135862.
* Marquis2019 :
S. G. Marquis, V. Sulzer, R. Timms, C. P. Please and S. J. Chapman. "An
asymptotic derivation of a single particle model with electrolyte." Journal of
the Electrochemical Society, 166(15), A3693–A3706 (2019).
Scott G. Marquis, Valentin Sulzer, Robert Timms, Colin P. Please, and S. Jon
Chapman. An asymptotic derivation of a single particle model with electrolyte.
Journal of The Electrochemical Society, 166(15):A3693–A3706, 2019.
doi:10.1149/2.0341915jes.
* Mohtat2020 :
P. Mohtat, S. Lee, V. Sulzer, J. B. Siegel & A. G. Stefanopoulou. "Differential
Expansion and Voltage Model for Li-ion Batteries at Practical Charging Rates".
Journal of The Electrochemical Society, 167(11), 110561 (2020).
Peyman Mohtat, Suhak Lee, Valentin Sulzer, Jason B. Siegel, and Anna G.
Stefanopoulou. Differential Expansion and Voltage Model for Li-ion Batteries at
Practical Charging Rates. Journal of The Electrochemical Society,
167(11):110561, 2020. doi:10.1149/1945-7111/aba5d1.
* NCA_Kim2011 :
G. H. Kim, K. Smith, K. J. Lee, S. Santhanagopalan, and A. Pesaran.
"Multi-domain modeling of lithium-ion batteries encompassing multi-physics in
varied length scales." Journal of The Electrochemical Society, 158(8), A955-A969
(2011).
* Ramadass2004 :
P. Ramadass, B. Haran, P. M. Gomadam, R. White, and B. N. Popov. "Development
of First Principles Capacity Fade Model for Li-Ion Cells." Journal of the
Electrochemical Society, 151(2), A196-A203 (2004).
* Ai 2020 :
> Ai, W., Kraft, L., Sturm, J., Jossen, A., & Wu, B. (2020).
Electrochemical Thermal-Mechanical Modelling of Stress Inhomogeneity
in Lithium-Ion Pouch Cells. Journal of The Electrochemical Society,
167(1), 013512. DOI: 10.1149/2.0122001JES.
Gi-Heon Kim, Kandler Smith, Kyu-Jin Lee, Shriram Santhanagopalan, and Ahmad
Pesaran. Multi-domain modeling of lithium-ion batteries encompassing
multi-physics in varied length scales. Journal of the Electrochemical Society,
158(8):A955–A969, 2011. doi:10.1149/1.3597614.
* Prada2013 :
C.-H. Chen, F. Brosa Planella, K. O’Regan, D. Gastol, W. D. Widanage, and E.
Kendrick. "Development of Experimental Techniques for Parameterization of
Multi-scale Lithium-ion Battery Models." Journal of the Electrochemical Society,
167(8), 080534 (2020).
E. Prada, D., Di Domenico, Y., Creff, J., Bernard, V., Sauvant-Moynot, and F.
Huet. "A simplified electrochemical and thermal aging model of LiFePO4-graphite
Li-ion batteries: power and capacity fade simulations". Journal of The
Electrochemical Society, 160(4), A616 (2013).
M. J. Lain, J., Brandon, and E. Kendrick. "Design Strategies for High Power vs.
High Energy Lithium Ion Cells". Batteries, 5(4), 64 (2019).

Lead-acid parameter sets
--------------------------
* Sulzer2019 :
V. Sulzer, S. J. Chapman, C. P. Please, D. A. Howey, and C. W. Monroe, "Faster
lead-acid battery simulations from porous-electrode theory: Part I. Physical
model." Journal of the Electrochemical Society, 166(12), 2363 (2019).

Chang-Hui Chen, Ferran Brosa Planella, Kieran O'Regan, Dominika Gastol, W.
Dhammika Widanage, and Emma Kendrick. Development of Experimental Techniques for
Parameterization of Multi-scale Lithium-ion Battery Models. Journal of The
Electrochemical Society, 167(8):080534, 2020.
doi:10.1149/1945-7111/ab9050.Michael J. Lain, James Brandon, and Emma Kendrick.
priyanshuone6 marked this conversation as resolved.
Show resolved Hide resolved
Design strategies for high power vs. high energy lithium ion cells. Batteries,
5(4):64, 2019. doi:10.3390/batteries5040064.Eric Prada, D. Di Domenico, Y.
Creff, J. Bernard, Valérie Sauvant-Moynot, and François Huet. A simplified
electrochemical and thermal aging model of LiFePO4-graphite Li-ion batteries:
power and capacity fade simulations. Journal of The Electrochemical Society,
160(4):A616, 2013. doi:10.1149/2.053304jes.
* Ramadass2004 :
Scott G. Marquis, Valentin Sulzer, Robert Timms, Colin P. Please, and S. Jon
Chapman. An asymptotic derivation of a single particle model with electrolyte.
Journal of The Electrochemical Society, 166(15):A3693–A3706, 2019.
doi:10.1149/2.0341915jes.
"""

#
Expand Down