Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

perf: Speedup writing of Parquet primitive values #18020

Merged
merged 1 commit into from
Aug 4, 2024

Conversation

coastalwhite
Copy link
Collaborator

This improves the performance writing of primitive arrays into Parquet.

Running the following program, which is made to really test this function.

use std::io::Seek;

use polars::frame::DataFrame;
use polars::prelude::NamedFrom;
use polars::series::Series;
use polars_io::parquet::write::ParquetWriter;
use rand::Rng;

const NUM_VALUES: usize = 10_000_000;

fn main() -> Result<(), Box<dyn std::error::Error>> {
    let mut rng = rand::thread_rng();
    let mut values: Vec<f32> = Vec::with_capacity(NUM_VALUES);

    unsafe { values.set_len(NUM_VALUES) };
    rng.fill(&mut values[..]);

    let values = &values[..];
    let s = Series::new("a", values);

    let mut f = std::fs::OpenOptions::new()
        .write(true)
        .create(true)
        .open("output.parquet")
        .unwrap();

    for _ in 0..100 {
        f.seek(std::io::SeekFrom::Start(0))?;
        let writer = ParquetWriter::new(&mut f)
            .with_compression(polars::prelude::ParquetCompression::Uncompressed);

        let mut df = DataFrame::new(vec![s.clone()]).unwrap();

        writer.finish(&mut df)?;
    }

    Ok(())
}

We run around ~1.8 times faster then before:

Benchmark 1: ./plparbench-before
  Time (mean ± σ):      5.718 s ±  0.804 s    [User: 4.425 s, System: 1.476 s]
  Range (min … max):    4.537 s …  6.458 s    5 runs

Benchmark 2: ./plparbench-after
  Time (mean ± σ):      3.194 s ±  0.034 s    [User: 1.640 s, System: 1.986 s]
  Range (min … max):    3.142 s …  3.228 s    5 runs

Summary
  ./plparbench-after ran
    1.79 ± 0.25 times faster than ./plparbench-before

This also adds specialized implementations for MinMaxKernel::min_max_{ignore, propagate}_nan for the Primitive Arrays. This halves the amount of work needed to calculate the column statistics.

@github-actions github-actions bot added performance Performance issues or improvements python Related to Python Polars rust Related to Rust Polars labels Aug 2, 2024
This improves the performance writing of primitive arrays into Parquet.

Running the following program, which is made to really test this function.

```rust
use std::io::Seek;

use polars::frame::DataFrame;
use polars::prelude::NamedFrom;
use polars::series::Series;
use polars_io::parquet::write::ParquetWriter;
use rand::Rng;

const NUM_VALUES: usize = 10_000_000;

fn main() -> Result<(), Box<dyn std::error::Error>> {
    let mut rng = rand::thread_rng();
    let mut values: Vec<f32> = Vec::with_capacity(NUM_VALUES);

    unsafe { values.set_len(NUM_VALUES) };
    rng.fill(&mut values[..]);

    let values = &values[..];
    let s = Series::new("a", values);

    let mut f = std::fs::OpenOptions::new()
        .write(true)
        .create(true)
        .open("output.parquet")
        .unwrap();

    for _ in 0..100 {
        f.seek(std::io::SeekFrom::Start(0))?;
        let writer = ParquetWriter::new(&mut f)
            .with_compression(polars::prelude::ParquetCompression::Uncompressed);

        let mut df = DataFrame::new(vec![s.clone()]).unwrap();

        writer.finish(&mut df)?;
    }

    Ok(())
}
```

We run around ~1.8 times faster then before:

```
Benchmark 1: ./plparbench-before
  Time (mean ± σ):      5.718 s ±  0.804 s    [User: 4.425 s, System: 1.476 s]
  Range (min … max):    4.537 s …  6.458 s    5 runs

Benchmark 2: ./plparbench-after
  Time (mean ± σ):      3.194 s ±  0.034 s    [User: 1.640 s, System: 1.986 s]
  Range (min … max):    3.142 s …  3.228 s    5 runs

Summary
  ./plparbench-after ran
    1.79 ± 0.25 times faster than ./plparbench-before
```

This also adds specialized implementations for `MinMaxKernel::min_max_{ignore,
propagate}_nan` for the Primitive Arrays. This halves the amount of work needed
to calculate the column statistics.
@coastalwhite coastalwhite force-pushed the perf-parquet-primitive-write branch from 25d914d to c370891 Compare August 2, 2024 16:41
Copy link

codecov bot commented Aug 2, 2024

Codecov Report

Attention: Patch coverage is 69.86755% with 91 lines in your changes missing coverage. Please review.

Project coverage is 80.45%. Comparing base (d5265d3) to head (c370891).
Report is 1 commits behind head on main.

Files Patch % Lines
crates/polars-compute/src/min_max/simd.rs 67.48% 53 Missing ⚠️
crates/polars-compute/src/min_max/scalar.rs 46.15% 21 Missing ⚠️
.../polars-parquet/src/arrow/write/primitive/basic.rs 84.61% 10 Missing ⚠️
crates/polars-compute/src/min_max/dyn_array.rs 64.70% 6 Missing ⚠️
crates/polars-parquet/src/arrow/write/utils.rs 94.44% 1 Missing ⚠️
Additional details and impacted files
@@            Coverage Diff             @@
##             main   #18020      +/-   ##
==========================================
- Coverage   80.49%   80.45%   -0.05%     
==========================================
  Files        1496     1496              
  Lines      196786   197027     +241     
  Branches     2817     2817              
==========================================
+ Hits       158407   158522     +115     
- Misses      37858    37984     +126     
  Partials      521      521              

☔ View full report in Codecov by Sentry.
📢 Have feedback on the report? Share it here.

let mut offset = 0;
let mut remaining_valid = array.len() - null_count;
while remaining_valid > 0 {
let num_valid = iter.take_leading_ones();
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Nice trick with the take_leading_ones/take_leading_zeros alternation. Didn't know we had that. :)

@ritchie46 ritchie46 merged commit 8adadf6 into pola-rs:main Aug 4, 2024
21 checks passed
@c-peters c-peters added the accepted Ready for implementation label Aug 5, 2024
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
accepted Ready for implementation performance Performance issues or improvements python Related to Python Polars rust Related to Rust Polars
Projects
Archived in project
Development

Successfully merging this pull request may close these issues.

3 participants