-
-
Notifications
You must be signed in to change notification settings - Fork 2.1k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
7 changed files
with
164 additions
and
155 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,151 @@ | ||
import polars as pl | ||
from polars.testing import assert_frame_equal | ||
|
||
|
||
def test_with_columns() -> None: | ||
import datetime | ||
|
||
df = pl.DataFrame( | ||
{ | ||
"a": [1, 2, 3, 4], | ||
"b": [0.5, 4, 10, 13], | ||
"c": [True, True, False, True], | ||
} | ||
) | ||
srs_named = pl.Series("f", [3, 2, 1, 0]) | ||
srs_unnamed = pl.Series(values=[3, 2, 1, 0]) | ||
|
||
expected = pl.DataFrame( | ||
{ | ||
"a": [1, 2, 3, 4], | ||
"b": [0.5, 4, 10, 13], | ||
"c": [True, True, False, True], | ||
"d": [0.5, 8.0, 30.0, 52.0], | ||
"e": [False, False, True, False], | ||
"f": [3, 2, 1, 0], | ||
"g": True, | ||
"h": pl.Series(values=[1, 1, 1, 1], dtype=pl.Int32), | ||
"i": 3.2, | ||
"j": [1, 2, 3, 4], | ||
"k": pl.Series(values=[None, None, None, None], dtype=pl.Null), | ||
"l": datetime.datetime(2001, 1, 1, 0, 0), | ||
} | ||
) | ||
|
||
# as exprs list | ||
dx = df.with_columns( | ||
[ | ||
(pl.col("a") * pl.col("b")).alias("d"), | ||
~pl.col("c").alias("e"), | ||
srs_named, | ||
pl.lit(True).alias("g"), | ||
pl.lit(1).alias("h"), | ||
pl.lit(3.2).alias("i"), | ||
pl.col("a").alias("j"), | ||
pl.lit(None).alias("k"), | ||
pl.lit(datetime.datetime(2001, 1, 1, 0, 0)).alias("l"), | ||
] | ||
) | ||
assert_frame_equal(dx, expected) | ||
|
||
# as positional arguments | ||
dx = df.with_columns( | ||
(pl.col("a") * pl.col("b")).alias("d"), | ||
~pl.col("c").alias("e"), | ||
srs_named, | ||
pl.lit(True).alias("g"), | ||
pl.lit(1).alias("h"), | ||
pl.lit(3.2).alias("i"), | ||
pl.col("a").alias("j"), | ||
pl.lit(None).alias("k"), | ||
pl.lit(datetime.datetime(2001, 1, 1, 0, 0)).alias("l"), | ||
) | ||
assert_frame_equal(dx, expected) | ||
|
||
# as keyword arguments | ||
dx = df.with_columns( | ||
d=pl.col("a") * pl.col("b"), | ||
e=~pl.col("c"), | ||
f=srs_unnamed, | ||
g=True, | ||
h=1, | ||
i=3.2, | ||
j="a", # Note: string interpreted as column name, resolves to `pl.col("a")` | ||
k=None, | ||
l=datetime.datetime(2001, 1, 1, 0, 0), | ||
) | ||
assert_frame_equal(dx, expected) | ||
|
||
# mixed | ||
dx = df.with_columns( | ||
[(pl.col("a") * pl.col("b")).alias("d")], | ||
~pl.col("c").alias("e"), | ||
f=srs_unnamed, | ||
g=True, | ||
h=1, | ||
i=3.2, | ||
j="a", # Note: string interpreted as column name, resolves to `pl.col("a")` | ||
k=None, | ||
l=datetime.datetime(2001, 1, 1, 0, 0), | ||
) | ||
assert_frame_equal(dx, expected) | ||
|
||
# automatically upconvert multi-output expressions to struct | ||
with pl.Config() as cfg: | ||
cfg.set_auto_structify(True) | ||
|
||
ldf = ( | ||
pl.DataFrame({"x1": [1, 2, 6], "x2": [1, 2, 3]}) | ||
.lazy() | ||
.with_columns( | ||
pl.col(["x1", "x2"]).pct_change().alias("pct_change"), | ||
maxes=pl.all().max().suffix("_max"), | ||
xcols=pl.col("^x.*$"), | ||
) | ||
) | ||
# ┌─────┬─────┬─────────────┬───────────┬───────────┐ | ||
# │ x1 ┆ x2 ┆ pct_change ┆ maxes ┆ xcols │ | ||
# │ --- ┆ --- ┆ --- ┆ --- ┆ --- │ | ||
# │ i64 ┆ i64 ┆ struct[2] ┆ struct[2] ┆ struct[2] │ | ||
# ╞═════╪═════╪═════════════╪═══════════╪═══════════╡ | ||
# │ 1 ┆ 1 ┆ {null,null} ┆ {6,3} ┆ {1,1} │ | ||
# │ 2 ┆ 2 ┆ {1.0,1.0} ┆ {6,3} ┆ {2,2} │ | ||
# │ 6 ┆ 3 ┆ {2.0,0.5} ┆ {6,3} ┆ {6,3} │ | ||
# └─────┴─────┴─────────────┴───────────┴───────────┘ | ||
assert ldf.collect().to_dicts() == [ | ||
{ | ||
"x1": 1, | ||
"x2": 1, | ||
"pct_change": {"x1": None, "x2": None}, | ||
"maxes": {"x1_max": 6, "x2_max": 3}, | ||
"xcols": {"x1": 1, "x2": 1}, | ||
}, | ||
{ | ||
"x1": 2, | ||
"x2": 2, | ||
"pct_change": {"x1": 1.0, "x2": 1.0}, | ||
"maxes": {"x1_max": 6, "x2_max": 3}, | ||
"xcols": {"x1": 2, "x2": 2}, | ||
}, | ||
{ | ||
"x1": 6, | ||
"x2": 3, | ||
"pct_change": {"x1": 2.0, "x2": 0.5}, | ||
"maxes": {"x1_max": 6, "x2_max": 3}, | ||
"xcols": {"x1": 6, "x2": 3}, | ||
}, | ||
] | ||
|
||
|
||
def test_with_columns_empty() -> None: | ||
df = pl.DataFrame({"a": [1, 2]}) | ||
result = df.with_columns() | ||
assert_frame_equal(result, df) | ||
|
||
|
||
def test_with_columns_single_series() -> None: | ||
ldf = pl.LazyFrame({"a": [1, 2]}) | ||
result = ldf.with_columns(pl.Series("b", [3, 4])) | ||
|
||
expected = pl.DataFrame({"a": [1, 2], "b": [3, 4]}) | ||
assert_frame_equal(result.collect(), expected) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters