Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[WIP] Adding unsupervised FastText to Gensim #1525

Merged
merged 35 commits into from
Sep 19, 2017
Merged
Show file tree
Hide file tree
Changes from 31 commits
Commits
Show all changes
35 commits
Select commit Hold shift + click to select a range
a815c84
added initial code for CBOW
chinmayapancholi13 Aug 8, 2017
102c14a
updated unit tests for fasttext
chinmayapancholi13 Aug 13, 2017
4c449df
corrected use of matrix and precomputed ngrams for vocab words
chinmayapancholi13 Aug 13, 2017
f49df54
added EOS token in 'LineSentence' class
chinmayapancholi13 Aug 15, 2017
1fcb8fa
added skipgram training code
chinmayapancholi13 Aug 16, 2017
82fda3c
updated unit tests for fasttext
chinmayapancholi13 Aug 16, 2017
cd59034
seeded 'np.random' with 'self.seed'
chinmayapancholi13 Aug 16, 2017
353f7a8
added test for persistence
chinmayapancholi13 Aug 17, 2017
569a026
updated seeding numpy obj
chinmayapancholi13 Aug 17, 2017
c228b8d
updated (unclean) fasttext code for review
chinmayapancholi13 Aug 23, 2017
29c627f
updated fasttext tutorial notebook
chinmayapancholi13 Aug 24, 2017
acbfdf2
added 'save' and 'load_fasttext_format' functions
chinmayapancholi13 Aug 24, 2017
cb7a2ad
updated unit tests for fasttext
chinmayapancholi13 Aug 24, 2017
5a18297
cleaned main fasttext code
chinmayapancholi13 Aug 25, 2017
4b98722
updated unittests
chinmayapancholi13 Aug 25, 2017
cf1f3e0
removed EOS token from LineSentence
chinmayapancholi13 Aug 25, 2017
d986242
fixed flake8 errors
chinmayapancholi13 Aug 25, 2017
bce17ff
[WIP] added online learning
chinmayapancholi13 Aug 25, 2017
cb84001
added tests for online learning
chinmayapancholi13 Aug 25, 2017
fbe8bdc
Merge branch 'develop' of https://github.com/RaRe-Technologies/gensim…
chinmayapancholi13 Aug 25, 2017
58c673a
flake8 fixes
chinmayapancholi13 Aug 25, 2017
893ef76
refactored code to remove redundancy
chinmayapancholi13 Aug 27, 2017
e12f6c0
reusing 'word_vec' from 'FastTextKeyedVectors'
chinmayapancholi13 Aug 27, 2017
39d14bd
flake8 fixes
chinmayapancholi13 Aug 27, 2017
d3ec5a8
split 'syn0_all' into 'syn0_vocab' and 'syn0_ngrams'
chinmayapancholi13 Aug 29, 2017
0854622
removed 'init_wv' param from Word2Vec
chinmayapancholi13 Aug 29, 2017
904882a
updated unittests
chinmayapancholi13 Aug 30, 2017
a9e7d03
flake8 errors fixed
chinmayapancholi13 Aug 30, 2017
ec58512
fixed oov word_vec
chinmayapancholi13 Sep 7, 2017
2ed7d31
removed merge conflicts
chinmayapancholi13 Sep 7, 2017
daace4a
updated test_training unittest
chinmayapancholi13 Sep 7, 2017
58c531b
Merge branch 'develop' into fasttext_gensim
menshikh-iv Sep 18, 2017
3ffa103
Fix broken merge
menshikh-iv Sep 18, 2017
2b0583b
useless change (need to re-run Appveyour)
menshikh-iv Sep 19, 2017
55d731a
Add skipIf for Appveyor x32 (avoid memory error)
menshikh-iv Sep 19, 2017
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
527 changes: 379 additions & 148 deletions docs/notebooks/FastText_Tutorial.ipynb

Large diffs are not rendered by default.

231 changes: 231 additions & 0 deletions gensim/models/fasttext.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,231 @@
#!/usr/bin/env python
# -*- coding: utf-8 -*-

import logging

import numpy as np
from numpy import zeros, ones, vstack, sum as np_sum, empty, float32 as REAL

from gensim.models.word2vec import Word2Vec, train_sg_pair, train_cbow_pair
from gensim.models.wrappers.fasttext import FastTextKeyedVectors
from gensim.models.wrappers.fasttext import FastText as Ft_Wrapper, compute_ngrams, ft_hash

logger = logging.getLogger(__name__)

MAX_WORDS_IN_BATCH = 10000


def train_batch_cbow(model, sentences, alpha, work=None, neu1=None):
result = 0
for sentence in sentences:
word_vocabs = [model.wv.vocab[w] for w in sentence if w in model.wv.vocab and
model.wv.vocab[w].sample_int > model.random.rand() * 2**32]
for pos, word in enumerate(word_vocabs):
reduced_window = model.random.randint(model.window)
start = max(0, pos - model.window + reduced_window)
window_pos = enumerate(word_vocabs[start:(pos + model.window + 1 - reduced_window)], start)
word2_indices = [word2.index for pos2, word2 in window_pos if (word2 is not None and pos2 != pos)]

word2_subwords = []
vocab_subwords_indices = []
ngrams_subwords_indices = []

for index in word2_indices:
vocab_subwords_indices += [index]
word2_subwords += model.wv.ngrams_word[model.wv.index2word[index]]

for subword in word2_subwords:
ngrams_subwords_indices.append(model.wv.ngrams[subword])

l1_vocab = np_sum(model.wv.syn0_vocab[vocab_subwords_indices], axis=0) # 1 x vector_size
l1_ngrams = np_sum(model.wv.syn0_ngrams[ngrams_subwords_indices], axis=0) # 1 x vector_size

l1 = np_sum([l1_vocab, l1_ngrams], axis=0)
subwords_indices = [vocab_subwords_indices] + [ngrams_subwords_indices]
if (subwords_indices[0] or subwords_indices[1]) and model.cbow_mean:
l1 /= (len(subwords_indices[0]) + len(subwords_indices[1]))

train_cbow_pair(model, word, subwords_indices, l1, alpha, is_ft=True) # train on the sliding window for target word
result += len(word_vocabs)
return result


def train_batch_sg(model, sentences, alpha, work=None):
result = 0
for sentence in sentences:
word_vocabs = [model.wv.vocab[w] for w in sentence if w in model.wv.vocab and
model.wv.vocab[w].sample_int > model.random.rand() * 2**32]
for pos, word in enumerate(word_vocabs):
reduced_window = model.random.randint(model.window) # `b` in the original word2vec code
# now go over all words from the (reduced) window, predicting each one in turn
start = max(0, pos - model.window + reduced_window)

subwords_indices = [word.index]
word2_subwords = model.wv.ngrams_word[model.wv.index2word[word.index]]

for subword in word2_subwords:
subwords_indices.append(model.wv.ngrams[subword])

for pos2, word2 in enumerate(word_vocabs[start:(pos + model.window + 1 - reduced_window)], start):
if pos2 != pos: # don't train on the `word` itself
train_sg_pair(model, model.wv.index2word[word2.index], subwords_indices, alpha, is_ft=True)

result += len(word_vocabs)
return result


class FastText(Word2Vec):
def __init__(
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Should definitely be using super here.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Done

self, sentences=None, sg=0, hs=0, size=100, alpha=0.025, window=5, min_count=5,
max_vocab_size=None, word_ngrams=1, loss='ns', sample=1e-3, seed=1, workers=3, min_alpha=0.0001,
negative=5, cbow_mean=1, hashfxn=hash, iter=5, null_word=0, min_n=3, max_n=6, sorted_vocab=1, bucket=2000000,
trim_rule=None, batch_words=MAX_WORDS_IN_BATCH):

# fastText specific params
self.bucket = bucket
self.word_ngrams = word_ngrams
self.min_n = min_n
self.max_n = max_n
if self.word_ngrams <= 1 and self.max_n == 0:
self.bucket = 0

super(FastText, self).__init__(sentences=sentences, size=size, alpha=alpha, window=window, min_count=min_count,
max_vocab_size=max_vocab_size, sample=sample, seed=seed, workers=workers, min_alpha=min_alpha,
sg=sg, hs=hs, negative=negative, cbow_mean=cbow_mean, hashfxn=hashfxn, iter=iter, null_word=null_word,
trim_rule=trim_rule, sorted_vocab=sorted_vocab, batch_words=batch_words)

def initialize_word_vectors(self):
self.wv = FastTextKeyedVectors()
self.wv.min_n = self.min_n
self.wv.max_n = self.max_n

def build_vocab(self, sentences, keep_raw_vocab=False, trim_rule=None, progress_per=10000, update=False):
if update:
if not len(self.wv.vocab):
raise RuntimeError("You cannot do an online vocabulary-update of a model which has no prior vocabulary. "
"First build the vocabulary of your model with a corpus "
"before doing an online update.")
self.old_vocab_len = len(self.wv.vocab)
self.old_hash2index_len = len(self.wv.hash2index)

super(FastText, self).build_vocab(sentences, keep_raw_vocab=keep_raw_vocab, trim_rule=trim_rule, progress_per=progress_per, update=update)
self.init_ngrams(update=update)

def init_ngrams(self, update=False):
if not update:
self.wv.ngrams = {}
self.wv.syn0_vocab = empty((len(self.wv.vocab), self.vector_size), dtype=REAL)
self.syn0_vocab_lockf = ones((len(self.wv.vocab), self.vector_size), dtype=REAL)

self.wv.syn0_ngrams = empty((self.bucket, self.vector_size), dtype=REAL)
self.syn0_ngrams_lockf = ones((self.bucket, self.vector_size), dtype=REAL)

all_ngrams = []
for w, v in self.wv.vocab.items():
self.wv.ngrams_word[w] = compute_ngrams(w, self.min_n, self.max_n)
all_ngrams += self.wv.ngrams_word[w]

all_ngrams = list(set(all_ngrams))
self.num_ngram_vectors = len(all_ngrams)
logger.info("Total number of ngrams is %d", len(all_ngrams))

self.wv.hash2index = {}
ngram_indices = []
new_hash_count = 0
for i, ngram in enumerate(all_ngrams):
ngram_hash = ft_hash(ngram)
if ngram_hash in self.wv.hash2index:
self.wv.ngrams[ngram] = self.wv.hash2index[ngram_hash]
else:
ngram_indices.append(ngram_hash % self.bucket)
self.wv.hash2index[ngram_hash] = new_hash_count
self.wv.ngrams[ngram] = self.wv.hash2index[ngram_hash]
new_hash_count = new_hash_count + 1

self.wv.syn0_ngrams = self.wv.syn0_ngrams.take(ngram_indices, axis=0)
self.syn0_ngrams_lockf = self.syn0_ngrams_lockf.take(ngram_indices, axis=0)
self.reset_ngram_weights()
else:
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I think refactoring this else section and the if section above to reuse code would make things cleaner, there is a lot of duplicated code. There are minor variations though, so refactoring won't be trivial.

new_ngrams = []
for w, v in self.wv.vocab.items():
self.wv.ngrams_word[w] = compute_ngrams(w, self.min_n, self.max_n)
new_ngrams += [ng for ng in self.wv.ngrams_word[w] if ng not in self.wv.ngrams]

new_ngrams = list(set(new_ngrams))
logger.info("Number of new ngrams is %d", len(new_ngrams))
new_hash_count = 0
for i, ngram in enumerate(new_ngrams):
ngram_hash = ft_hash(ngram)
if ngram_hash not in self.wv.hash2index:
self.wv.hash2index[ngram_hash] = new_hash_count + self.old_hash2index_len
self.wv.ngrams[ngram] = self.wv.hash2index[ngram_hash]
new_hash_count = new_hash_count + 1
else:
self.wv.ngrams[ngram] = self.wv.hash2index[ngram_hash]

rand_obj = np.random
rand_obj.seed(self.seed)
new_vocab_rows = rand_obj.uniform(-1.0 / self.vector_size, 1.0 / self.vector_size, (len(self.wv.vocab) - self.old_vocab_len, self.vector_size))
new_vocab_lockf_rows = ones((len(self.wv.vocab) - self.old_vocab_len, self.vector_size), dtype=REAL)
new_ngram_rows = rand_obj.uniform(-1.0 / self.vector_size, 1.0 / self.vector_size, (len(self.wv.hash2index) - self.old_hash2index_len, self.vector_size))
new_ngram_lockf_rows = ones((len(self.wv.hash2index) - self.old_hash2index_len, self.vector_size), dtype=REAL)

self.wv.syn0_vocab = vstack([self.wv.syn0_vocab, new_vocab_rows])
self.syn0_vocab_lockf = vstack([self.syn0_vocab_lockf, new_vocab_lockf_rows])
self.wv.syn0_ngrams = vstack([self.wv.syn0_ngrams, new_ngram_rows])
self.syn0_ngrams_lockf = vstack([self.syn0_ngrams_lockf, new_ngram_lockf_rows])

def reset_ngram_weights(self):
rand_obj = np.random
rand_obj.seed(self.seed)
for index in range(len(self.wv.vocab)):
self.wv.syn0_vocab[index] = rand_obj.uniform(-1.0 / self.vector_size, 1.0 / self.vector_size, self.vector_size)
for index in range(len(self.wv.hash2index)):
self.wv.syn0_ngrams[index] = rand_obj.uniform(-1.0 / self.vector_size, 1.0 / self.vector_size, self.vector_size)

def _do_train_job(self, sentences, alpha, inits):
work, neu1 = inits
tally = 0
if self.sg:
tally += train_batch_sg(self, sentences, alpha, work)
else:
tally += train_batch_cbow(self, sentences, alpha, work, neu1)

return tally, self._raw_word_count(sentences)

def train(self, sentences, total_examples=None, total_words=None,
epochs=None, start_alpha=None, end_alpha=None,
word_count=0, queue_factor=2, report_delay=1.0):
self.neg_labels = []
if self.negative > 0:
# precompute negative labels optimization for pure-python training
self.neg_labels = zeros(self.negative + 1)
self.neg_labels[0] = 1.

Word2Vec.train(self, sentences, total_examples=self.corpus_count, epochs=self.iter,
start_alpha=self.alpha, end_alpha=self.min_alpha)
self.get_vocab_word_vecs()

def __getitem__(self, word):
return self.word_vec(word)

def get_vocab_word_vecs(self):
for w, v in self.wv.vocab.items():
word_vec = self.wv.syn0_vocab[v.index]
ngrams = self.wv.ngrams_word[w]
ngram_weights = self.wv.syn0_ngrams
for ngram in ngrams:
word_vec += ngram_weights[self.wv.ngrams[ngram]]
word_vec /= (len(ngrams) + 1)
self.wv.syn0[v.index] = word_vec

def word_vec(self, word, use_norm=False):
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Any reason for not reusing word_vec from FastTextKeyedVectors here?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Done

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I get this error if I try to access an OOV word:

print model["use"] # only "user" is available in the vocabulary

     86         else:
     87             word_vec = np.zeros(self.syn0_ngrams.shape[1])
---> 88             ngrams = compute_ngrams(word, self.min_n, self.max_n)
     89             ngrams = [ng for ng in ngrams if ng in self.ngrams]
     90             if use_norm:

AttributeError: 'FastTextKeyedVectors' object has no attribute 'min_n'

Looks like FastTextKeyedVectors class has no min_n attribute?

Copy link

@luthfianto luthfianto Sep 7, 2017

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Here's the minimal example to reproduce my issue https://gist.github.com/rilut/31f41d5cf3da075d43cf7e4f2c993b76

Thanks 🙏

Copy link

@luthfianto luthfianto Sep 7, 2017

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Btw, since self.wv = FastTextKeyedVectors() can we just do self.wv.word_vec(word, word_norm)? (just asking)

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@rilut Seems like I missed setting min_n and max_n in FastTextKeyedVectors after I had refactored the code b/w the wrapper and main models.FastText class.
Anyway, thanks a lot for pointing out this! I have made the necessary changes for this now and also added a unittest to ensure that this error doesn't go unnoticed in the future.
And yes, FastTextKeyedVectors.word_vec(self.wv, word, use_norm=use_norm) and self.wv.word_vec(word, word_norm) are equivalent. I preferred the former form at the time since it made the borrowed usage of the function more explicit.

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@chinmayapancholi13 oh ok that's good. Thanks for your fix and hard work! I really appreciated it.

return FastTextKeyedVectors.word_vec(self.wv, word, use_norm=use_norm)

@classmethod
def load_fasttext_format(cls, *args, **kwargs):
return Ft_Wrapper.load_fasttext_format(*args, **kwargs)

def save(self, *args, **kwargs):
kwargs['ignore'] = kwargs.get('ignore', ['syn0norm', 'syn0_vocab_norm', 'syn0_ngrams_norm'])
super(FastText, self).save(*args, **kwargs)
63 changes: 52 additions & 11 deletions gensim/models/word2vec.py
Original file line number Diff line number Diff line change
Expand Up @@ -252,18 +252,32 @@ def score_sentence_cbow(model, sentence, work=None, neu1=None):


def train_sg_pair(model, word, context_index, alpha, learn_vectors=True, learn_hidden=True,
context_vectors=None, context_locks=None, compute_loss=False):
context_vectors=None, context_locks=None, compute_loss=False, is_ft=False):
if context_vectors is None:
context_vectors = model.wv.syn0
if is_ft:
context_vectors_vocab = model.wv.syn0_vocab
context_vectors_ngrams = model.wv.syn0_ngrams
else:
context_vectors = model.wv.syn0
if context_locks is None:
context_locks = model.syn0_lockf
if is_ft:
context_locks_vocab = model.syn0_vocab_lockf
context_locks_ngrams = model.syn0_ngrams_lockf
else:
context_locks = model.syn0_lockf

if word not in model.wv.vocab:
return
predict_word = model.wv.vocab[word] # target word (NN output)

l1 = context_vectors[context_index] # input word (NN input/projection layer)
lock_factor = context_locks[context_index]
if is_ft:
l1_vocab = context_vectors_vocab[context_index[0]]
l1_ngrams = np_sum(context_vectors_ngrams[context_index[1:]], axis=0)
if context_index:
l1 = np_sum([l1_vocab, l1_ngrams], axis=0) / len(context_index)
else:
l1 = context_vectors[context_index] # input word (NN input/projection layer)
lock_factor = context_locks[context_index]

neu1e = zeros(l1.shape)

Expand Down Expand Up @@ -304,11 +318,30 @@ def train_sg_pair(model, word, context_index, alpha, learn_vectors=True, learn_h
model.running_training_loss -= log(expit(prod_term[0])) # for the output word

if learn_vectors:
l1 += neu1e * lock_factor # learn input -> hidden (mutates model.wv.syn0[word2.index], if that is l1)
if is_ft:
model.wv.syn0_vocab[context_index[0]] += neu1e * context_locks_vocab[context_index[0]]
for i in context_index[1:]:
model.wv.syn0_ngrams[i] += neu1e * context_locks_ngrams[i]
else:
l1 += neu1e * lock_factor # learn input -> hidden (mutates model.wv.syn0[word2.index], if that is l1)
return neu1e


def train_cbow_pair(model, word, input_word_indices, l1, alpha, learn_vectors=True, learn_hidden=True, compute_loss=False):
def train_cbow_pair(model, word, input_word_indices, l1, alpha, learn_vectors=True, learn_hidden=True, compute_loss=False,
context_vectors=None, context_locks=None, is_ft=False):
if context_vectors is None:
if is_ft:
context_vectors_vocab = model.wv.syn0_vocab
context_vectors_ngrams = model.wv.syn0_ngrams
else:
context_vectors = model.wv.syn0
if context_locks is None:
if is_ft:
context_locks_vocab = model.syn0_vocab_lockf
context_locks_ngrams = model.syn0_ngrams_lockf
else:
context_locks = model.syn0_lockf

neu1e = zeros(l1.shape)

if model.hs:
Expand Down Expand Up @@ -347,10 +380,18 @@ def train_cbow_pair(model, word, input_word_indices, l1, alpha, learn_vectors=Tr

if learn_vectors:
# learn input -> hidden, here for all words in the window separately
if not model.cbow_mean and input_word_indices:
neu1e /= len(input_word_indices)
for i in input_word_indices:
model.wv.syn0[i] += neu1e * model.syn0_lockf[i]
if is_ft:
if not model.cbow_mean and input_word_indices:
neu1e /= (len(input_word_indices[0]) + len(input_word_indices[1]))
for i in input_word_indices[0]:
context_vectors_vocab[i] += neu1e * context_locks_vocab[i]
for i in input_word_indices[1]:
context_vectors_ngrams[i] += neu1e * context_locks_ngrams[i]
else:
if not model.cbow_mean and input_word_indices:
neu1e /= len(input_word_indices)
for i in input_word_indices:
context_vectors[i] += neu1e * context_locks[i]

return neu1e

Expand Down
Loading