-
-
Notifications
You must be signed in to change notification settings - Fork 4.4k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Fixed KeyError in coherence model (#2830)
* Fixed coherence model issue #2711 * Handled token or id formatting of topics * Raised error with wrong formatting * removed blank lines * updated code * updated code * revision on coherencemodel.py * added new tests * rm trailing whitespace * more flake8 fixes * still more flake8 fixes * update changelog Co-authored-by: Michael Penkov <[email protected]>
- Loading branch information
1 parent
b378b1b
commit 52fade6
Showing
3 changed files
with
309 additions
and
5 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,300 @@ | ||
#!/usr/bin/env python | ||
# -*- coding: utf-8 -*- | ||
# | ||
# Copyright (C) 2010 Radim Rehurek <[email protected]> | ||
# Licensed under the GNU LGPL v2.1 - http://www.gnu.org/licenses/lgpl.html | ||
|
||
""" | ||
Automated tests for checking transformation algorithms (the models package). | ||
""" | ||
|
||
import logging | ||
import unittest | ||
import multiprocessing as mp | ||
from functools import partial | ||
|
||
import numpy as np | ||
from gensim.matutils import argsort | ||
from gensim.models.coherencemodel import CoherenceModel, BOOLEAN_DOCUMENT_BASED | ||
from gensim.models.ldamodel import LdaModel | ||
from gensim.test.utils import get_tmpfile, common_texts, common_dictionary, common_corpus | ||
|
||
|
||
class TestCoherenceModel(unittest.TestCase): | ||
|
||
# set up vars used in testing ("Deerwester" from the web tutorial) | ||
texts = common_texts | ||
dictionary = common_dictionary | ||
corpus = common_corpus | ||
|
||
def setUp(self): | ||
# Suppose given below are the topics which two different LdaModels come up with. | ||
# `topics1` is clearly better as it has a clear distinction between system-human | ||
# interaction and graphs. Hence both the coherence measures for `topics1` should be | ||
# greater. | ||
self.topics1 = [ | ||
['human', 'computer', 'system', 'interface'], | ||
['graph', 'minors', 'trees', 'eps'] | ||
] | ||
self.topics2 = [ | ||
['user', 'graph', 'minors', 'system'], | ||
['time', 'graph', 'survey', 'minors'] | ||
] | ||
self.topics3 = [ | ||
['token', 'computer', 'system', 'interface'], | ||
['graph', 'minors', 'trees', 'eps'] | ||
] | ||
# using this list the model should be unable to interpret topic | ||
# as either a list of tokens or a list of ids | ||
self.topics4 = [ | ||
['not a token', 'not an id', 'tests using', "this list"], | ||
['should raise', 'an error', 'to pass', 'correctly'] | ||
] | ||
self.topicIds1 = [] | ||
for topic in self.topics1: | ||
self.topicIds1.append([self.dictionary.token2id[token] for token in topic]) | ||
|
||
self.ldamodel = LdaModel( | ||
corpus=self.corpus, id2word=self.dictionary, num_topics=2, | ||
passes=0, iterations=0 | ||
) | ||
|
||
def check_coherence_measure(self, coherence): | ||
"""Check provided topic coherence algorithm on given topics""" | ||
if coherence in BOOLEAN_DOCUMENT_BASED: | ||
kwargs = dict(corpus=self.corpus, dictionary=self.dictionary, coherence=coherence) | ||
else: | ||
kwargs = dict(texts=self.texts, dictionary=self.dictionary, coherence=coherence) | ||
|
||
cm1 = CoherenceModel(topics=self.topics1, **kwargs) | ||
cm2 = CoherenceModel(topics=self.topics2, **kwargs) | ||
cm3 = CoherenceModel(topics=self.topics3, **kwargs) | ||
cm4 = CoherenceModel(topics=self.topicIds1, **kwargs) | ||
self.assertRaises(ValueError, lambda: CoherenceModel(topics=self.topics4, **kwargs)) | ||
self.assertEqual(cm1.get_coherence(), cm4.get_coherence()) | ||
self.assertIsInstance(cm3.get_coherence(), np.double) | ||
self.assertGreater(cm1.get_coherence(), cm2.get_coherence()) | ||
|
||
def testUMass(self): | ||
"""Test U_Mass topic coherence algorithm on given topics""" | ||
self.check_coherence_measure('u_mass') | ||
|
||
def testCv(self): | ||
"""Test C_v topic coherence algorithm on given topics""" | ||
self.check_coherence_measure('c_v') | ||
|
||
def testCuci(self): | ||
"""Test C_uci topic coherence algorithm on given topics""" | ||
self.check_coherence_measure('c_uci') | ||
|
||
def testCnpmi(self): | ||
"""Test C_npmi topic coherence algorithm on given topics""" | ||
self.check_coherence_measure('c_npmi') | ||
|
||
def testUMassLdaModel(self): | ||
"""Perform sanity check to see if u_mass coherence works with LDA Model""" | ||
# Note that this is just a sanity check because LDA does not guarantee a better coherence | ||
# value on the topics if iterations are increased. This can be seen here: | ||
# https://gist.github.com/dsquareindia/60fd9ab65b673711c3fa00509287ddde | ||
CoherenceModel(model=self.ldamodel, corpus=self.corpus, coherence='u_mass') | ||
|
||
def testCvLdaModel(self): | ||
"""Perform sanity check to see if c_v coherence works with LDA Model""" | ||
CoherenceModel(model=self.ldamodel, texts=self.texts, coherence='c_v') | ||
|
||
def testCw2vLdaModel(self): | ||
"""Perform sanity check to see if c_w2v coherence works with LDAModel.""" | ||
CoherenceModel(model=self.ldamodel, texts=self.texts, coherence='c_w2v') | ||
|
||
def testCuciLdaModel(self): | ||
"""Perform sanity check to see if c_uci coherence works with LDA Model""" | ||
CoherenceModel(model=self.ldamodel, texts=self.texts, coherence='c_uci') | ||
|
||
def testCnpmiLdaModel(self): | ||
"""Perform sanity check to see if c_npmi coherence works with LDA Model""" | ||
CoherenceModel(model=self.ldamodel, texts=self.texts, coherence='c_npmi') | ||
|
||
def testErrors(self): | ||
"""Test if errors are raised on bad input""" | ||
# not providing dictionary | ||
self.assertRaises( | ||
ValueError, CoherenceModel, topics=self.topics1, corpus=self.corpus, | ||
coherence='u_mass' | ||
) | ||
# not providing texts for c_v and instead providing corpus | ||
self.assertRaises( | ||
ValueError, CoherenceModel, topics=self.topics1, corpus=self.corpus, | ||
dictionary=self.dictionary, coherence='c_v' | ||
) | ||
# not providing corpus or texts for u_mass | ||
self.assertRaises( | ||
ValueError, CoherenceModel, topics=self.topics1, dictionary=self.dictionary, | ||
coherence='u_mass' | ||
) | ||
|
||
def testProcesses(self): | ||
get_model = partial(CoherenceModel, | ||
topics=self.topics1, corpus=self.corpus, dictionary=self.dictionary, coherence='u_mass' | ||
) | ||
|
||
model, used_cpus = get_model(), mp.cpu_count() - 1 | ||
self.assertEqual(model.processes, used_cpus) | ||
for p in range(-2, 1): | ||
self.assertEqual(get_model(processes=p).processes, used_cpus) | ||
|
||
for p in range(1, 4): | ||
self.assertEqual(get_model(processes=p).processes, p) | ||
|
||
def testPersistence(self): | ||
fname = get_tmpfile('gensim_models_coherence.tst') | ||
model = CoherenceModel( | ||
topics=self.topics1, corpus=self.corpus, dictionary=self.dictionary, coherence='u_mass' | ||
) | ||
model.save(fname) | ||
model2 = CoherenceModel.load(fname) | ||
self.assertTrue(model.get_coherence() == model2.get_coherence()) | ||
|
||
def testPersistenceCompressed(self): | ||
fname = get_tmpfile('gensim_models_coherence.tst.gz') | ||
model = CoherenceModel( | ||
topics=self.topics1, corpus=self.corpus, dictionary=self.dictionary, coherence='u_mass' | ||
) | ||
model.save(fname) | ||
model2 = CoherenceModel.load(fname) | ||
self.assertTrue(model.get_coherence() == model2.get_coherence()) | ||
|
||
def testPersistenceAfterProbabilityEstimationUsingCorpus(self): | ||
fname = get_tmpfile('gensim_similarities.tst.pkl') | ||
model = CoherenceModel( | ||
topics=self.topics1, corpus=self.corpus, dictionary=self.dictionary, coherence='u_mass' | ||
) | ||
model.estimate_probabilities() | ||
model.save(fname) | ||
model2 = CoherenceModel.load(fname) | ||
self.assertIsNotNone(model2._accumulator) | ||
self.assertTrue(model.get_coherence() == model2.get_coherence()) | ||
|
||
def testPersistenceAfterProbabilityEstimationUsingTexts(self): | ||
fname = get_tmpfile('gensim_similarities.tst.pkl') | ||
model = CoherenceModel( | ||
topics=self.topics1, texts=self.texts, dictionary=self.dictionary, coherence='c_v' | ||
) | ||
model.estimate_probabilities() | ||
model.save(fname) | ||
model2 = CoherenceModel.load(fname) | ||
self.assertIsNotNone(model2._accumulator) | ||
self.assertTrue(model.get_coherence() == model2.get_coherence()) | ||
|
||
def testAccumulatorCachingSameSizeTopics(self): | ||
kwargs = dict(corpus=self.corpus, dictionary=self.dictionary, coherence='u_mass') | ||
cm1 = CoherenceModel(topics=self.topics1, **kwargs) | ||
cm1.estimate_probabilities() | ||
accumulator = cm1._accumulator | ||
self.assertIsNotNone(accumulator) | ||
cm1.topics = self.topics1 | ||
self.assertEqual(accumulator, cm1._accumulator) | ||
cm1.topics = self.topics2 | ||
self.assertEqual(None, cm1._accumulator) | ||
|
||
def testAccumulatorCachingTopicSubsets(self): | ||
kwargs = dict(corpus=self.corpus, dictionary=self.dictionary, coherence='u_mass') | ||
cm1 = CoherenceModel(topics=self.topics1, **kwargs) | ||
cm1.estimate_probabilities() | ||
accumulator = cm1._accumulator | ||
self.assertIsNotNone(accumulator) | ||
cm1.topics = [t[:2] for t in self.topics1] | ||
self.assertEqual(accumulator, cm1._accumulator) | ||
cm1.topics = self.topics1 | ||
self.assertEqual(accumulator, cm1._accumulator) | ||
|
||
def testAccumulatorCachingWithModelSetting(self): | ||
kwargs = dict(corpus=self.corpus, dictionary=self.dictionary, coherence='u_mass') | ||
cm1 = CoherenceModel(topics=self.topics1, **kwargs) | ||
cm1.estimate_probabilities() | ||
self.assertIsNotNone(cm1._accumulator) | ||
cm1.model = self.ldamodel | ||
topics = [] | ||
for topic in self.ldamodel.state.get_lambda(): | ||
bestn = argsort(topic, topn=cm1.topn, reverse=True) | ||
topics.append(bestn) | ||
self.assertTrue(np.array_equal(topics, cm1.topics)) | ||
self.assertIsNone(cm1._accumulator) | ||
|
||
def testAccumulatorCachingWithTopnSettingGivenTopics(self): | ||
kwargs = dict(corpus=self.corpus, dictionary=self.dictionary, topn=5, coherence='u_mass') | ||
cm1 = CoherenceModel(topics=self.topics1, **kwargs) | ||
cm1.estimate_probabilities() | ||
self.assertIsNotNone(cm1._accumulator) | ||
|
||
accumulator = cm1._accumulator | ||
topics_before = cm1._topics | ||
cm1.topn = 3 | ||
self.assertEqual(accumulator, cm1._accumulator) | ||
self.assertEqual(3, len(cm1.topics[0])) | ||
self.assertEqual(topics_before, cm1._topics) | ||
|
||
# Topics should not have been truncated, so topn settings below 5 should work | ||
cm1.topn = 4 | ||
self.assertEqual(accumulator, cm1._accumulator) | ||
self.assertEqual(4, len(cm1.topics[0])) | ||
self.assertEqual(topics_before, cm1._topics) | ||
|
||
with self.assertRaises(ValueError): | ||
cm1.topn = 6 # can't expand topics any further without model | ||
|
||
def testAccumulatorCachingWithTopnSettingGivenModel(self): | ||
kwargs = dict(corpus=self.corpus, dictionary=self.dictionary, topn=5, coherence='u_mass') | ||
cm1 = CoherenceModel(model=self.ldamodel, **kwargs) | ||
cm1.estimate_probabilities() | ||
self.assertIsNotNone(cm1._accumulator) | ||
|
||
accumulator = cm1._accumulator | ||
topics_before = cm1._topics | ||
cm1.topn = 3 | ||
self.assertEqual(accumulator, cm1._accumulator) | ||
self.assertEqual(3, len(cm1.topics[0])) | ||
self.assertEqual(topics_before, cm1._topics) | ||
|
||
cm1.topn = 6 # should be able to expand given the model | ||
self.assertEqual(6, len(cm1.topics[0])) | ||
|
||
def testCompareCoherenceForTopics(self): | ||
topics = [self.topics1, self.topics2] | ||
cm = CoherenceModel.for_topics( | ||
topics, dictionary=self.dictionary, texts=self.texts, coherence='c_v') | ||
self.assertIsNotNone(cm._accumulator) | ||
|
||
# Accumulator should have all relevant IDs. | ||
for topic_list in topics: | ||
cm.topics = topic_list | ||
self.assertIsNotNone(cm._accumulator) | ||
|
||
(coherence_topics1, coherence1), (coherence_topics2, coherence2) = \ | ||
cm.compare_model_topics(topics) | ||
|
||
self.assertAlmostEqual(np.mean(coherence_topics1), coherence1, 4) | ||
self.assertAlmostEqual(np.mean(coherence_topics2), coherence2, 4) | ||
self.assertGreater(coherence1, coherence2) | ||
|
||
def testCompareCoherenceForModels(self): | ||
models = [self.ldamodel, self.ldamodel] | ||
cm = CoherenceModel.for_models( | ||
models, dictionary=self.dictionary, texts=self.texts, coherence='c_v') | ||
self.assertIsNotNone(cm._accumulator) | ||
|
||
# Accumulator should have all relevant IDs. | ||
for model in models: | ||
cm.model = model | ||
self.assertIsNotNone(cm._accumulator) | ||
|
||
(coherence_topics1, coherence1), (coherence_topics2, coherence2) = \ | ||
cm.compare_models(models) | ||
|
||
self.assertAlmostEqual(np.mean(coherence_topics1), coherence1, 4) | ||
self.assertAlmostEqual(np.mean(coherence_topics2), coherence2, 4) | ||
self.assertAlmostEqual(coherence1, coherence2, places=4) | ||
|
||
|
||
if __name__ == '__main__': | ||
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.DEBUG) | ||
unittest.main() |