Skip to content

Commit

Permalink
Fix deprecated numpy type names (fixes #269) (#270)
Browse files Browse the repository at this point in the history
In the most recent version of numpy (1.24) some of the types have been
deprecated. This commit fixes these errors.
  • Loading branch information
Colelyman authored Jan 5, 2023
1 parent 58a8e42 commit 104866e
Show file tree
Hide file tree
Showing 4 changed files with 24 additions and 24 deletions.
4 changes: 2 additions & 2 deletions CRISPResso2/CRISPResso2Align.pyx
Original file line number Diff line number Diff line change
Expand Up @@ -166,14 +166,14 @@ def global_align(str pystr_seqj, str pystr_seqi, np.ndarray[DTYPE_INT, ndim=2] m
#init i matrix
for i in range(1,max_j+1):
iScore[0,i] = gap_extend * i + gap_incentive[0]
# iScore[0,1:] = [gap_extend * np.arange(1, max_j+1, dtype=np.int)]
# iScore[0,1:] = [gap_extend * np.arange(1, max_j+1, dtype=int)]
iScore[0:,0] = min_score
iPointer[0,1:] = IARRAY

#init j matrix
for i in range(1,max_i+1):
jScore[i,0] = gap_extend * i + gap_incentive[0]
#jScore[1:,0] = np.vectorize(gap_extend * np.arange(1, max_i+1, dtype=np.int))
#jScore[1:,0] = np.vectorize(gap_extend * np.arange(1, max_i+1, dtype=int))
jScore[0,0:] = min_score
jPointer[1:,0] = JARRAY

Expand Down
2 changes: 1 addition & 1 deletion CRISPResso2/CRISPRessoBatchCORE.py
Original file line number Diff line number Diff line change
Expand Up @@ -451,7 +451,7 @@ def main():

mod_pcts = {}
for key in mod_freqs:
mod_pcts[key] = np.array(mod_freqs[key]).astype(np.float)/float(mod_freqs['Total'][0])
mod_pcts[key] = np.array(mod_freqs[key]).astype(float)/float(mod_freqs['Total'][0])

amp_found_count += 1

Expand Down
34 changes: 17 additions & 17 deletions CRISPResso2/CRISPRessoCORE.py
Original file line number Diff line number Diff line change
Expand Up @@ -3514,11 +3514,11 @@ def count_alternate_alleles(sub_base_vectors, ref_name, ref_sequence, ref_total_
if not args.suppress_plots:
mod_pcts = []
tot = float(counts_total[ref_name])
mod_pcts.append(np.concatenate((['Insertions'], np.array(all_insertion_count_vectors[ref_name]).astype(np.float)/tot)))
mod_pcts.append(np.concatenate((['Insertions_Left'], np.array(all_insertion_left_count_vectors[ref_name]).astype(np.float)/tot)))
mod_pcts.append(np.concatenate((['Deletions'], np.array(all_deletion_count_vectors[ref_name]).astype(np.float)/tot)))
mod_pcts.append(np.concatenate((['Substitutions'], np.array(all_substitution_count_vectors[ref_name]).astype(np.float)/tot)))
mod_pcts.append(np.concatenate((['All_modifications'], np.array(all_indelsub_count_vectors[ref_name]).astype(np.float)/tot)))
mod_pcts.append(np.concatenate((['Insertions'], np.array(all_insertion_count_vectors[ref_name]).astype(float)/tot)))
mod_pcts.append(np.concatenate((['Insertions_Left'], np.array(all_insertion_left_count_vectors[ref_name]).astype(float)/tot)))
mod_pcts.append(np.concatenate((['Deletions'], np.array(all_deletion_count_vectors[ref_name]).astype(float)/tot)))
mod_pcts.append(np.concatenate((['Substitutions'], np.array(all_substitution_count_vectors[ref_name]).astype(float)/tot)))
mod_pcts.append(np.concatenate((['All_modifications'], np.array(all_indelsub_count_vectors[ref_name]).astype(float)/tot)))
mod_pcts.append(np.concatenate((['Total'], [counts_total[ref_name]]*refs[ref_name]['sequence_length'])))
colnames = ['Modification']+list(ref_seq)
modification_percentage_summary_df = pd.DataFrame(mod_pcts, columns=colnames).apply(pd.to_numeric, errors='ignore')
Expand Down Expand Up @@ -3897,18 +3897,18 @@ def count_alternate_alleles(sub_base_vectors, ref_name, ref_sequence, ref_total_
for ref_name_for_hdr in ref_names_for_hdr:
tot = float(counts_total[ref_name_for_hdr])
for nuc in ['A', 'C', 'G', 'T', 'N', '-']:
nuc_pcts.append(np.concatenate(([ref_name_for_hdr, nuc], np.array(ref1_all_base_count_vectors[ref_name_for_hdr+"_"+nuc]).astype(np.float)/tot)))
nuc_pcts.append(np.concatenate(([ref_name_for_hdr, nuc], np.array(ref1_all_base_count_vectors[ref_name_for_hdr+"_"+nuc]).astype(float)/tot)))
colnames = ['Batch', 'Nucleotide']+list(refs[ref_names_for_hdr[0]]['sequence'])
hdr_nucleotide_percentage_summary_df = pd.DataFrame(nuc_pcts, columns=colnames).apply(pd.to_numeric, errors='ignore')

mod_pcts = []
for ref_name_for_hdr in ref_names_for_hdr:
tot = float(counts_total[ref_name_for_hdr])
mod_pcts.append(np.concatenate(([ref_name_for_hdr, 'Insertions'], np.array(ref1_all_insertion_count_vectors[ref_name_for_hdr]).astype(np.float)/tot)))
mod_pcts.append(np.concatenate(([ref_name_for_hdr, 'Insertions_Left'], np.array(ref1_all_insertion_left_count_vectors[ref_name_for_hdr]).astype(np.float)/tot)))
mod_pcts.append(np.concatenate(([ref_name_for_hdr, 'Deletions'], np.array(ref1_all_deletion_count_vectors[ref_name_for_hdr]).astype(np.float)/tot)))
mod_pcts.append(np.concatenate(([ref_name_for_hdr, 'Substitutions'], np.array(ref1_all_substitution_count_vectors[ref_name_for_hdr]).astype(np.float)/tot)))
mod_pcts.append(np.concatenate(([ref_name_for_hdr, 'All_modifications'], np.array(ref1_all_indelsub_count_vectors[ref_name_for_hdr]).astype(np.float)/tot)))
mod_pcts.append(np.concatenate(([ref_name_for_hdr, 'Insertions'], np.array(ref1_all_insertion_count_vectors[ref_name_for_hdr]).astype(float)/tot)))
mod_pcts.append(np.concatenate(([ref_name_for_hdr, 'Insertions_Left'], np.array(ref1_all_insertion_left_count_vectors[ref_name_for_hdr]).astype(float)/tot)))
mod_pcts.append(np.concatenate(([ref_name_for_hdr, 'Deletions'], np.array(ref1_all_deletion_count_vectors[ref_name_for_hdr]).astype(float)/tot)))
mod_pcts.append(np.concatenate(([ref_name_for_hdr, 'Substitutions'], np.array(ref1_all_substitution_count_vectors[ref_name_for_hdr]).astype(float)/tot)))
mod_pcts.append(np.concatenate(([ref_name_for_hdr, 'All_modifications'], np.array(ref1_all_indelsub_count_vectors[ref_name_for_hdr]).astype(float)/tot)))
mod_pcts.append(np.concatenate(([ref_name_for_hdr, 'Total'], [counts_total[ref_name_for_hdr]]*refs[ref_names_for_hdr[0]]['sequence_length'])))
colnames = ['Batch', 'Modification']+list(refs[ref_names_for_hdr[0]]['sequence'])
hdr_modification_percentage_summary_df = pd.DataFrame(mod_pcts, columns=colnames).apply(pd.to_numeric, errors='ignore')
Expand Down Expand Up @@ -4465,18 +4465,18 @@ def get_scaffold_len(row, scaffold_start_loc, scaffold_seq):
for ref_name in ref_names_for_pe:
tot = float(counts_total[ref_name])
for nuc in ['A', 'C', 'G', 'T', 'N', '-']:
nuc_pcts.append(np.concatenate(([ref_name, nuc], np.array(ref1_all_base_count_vectors[ref_name+"_"+nuc]).astype(np.float)/tot)))
nuc_pcts.append(np.concatenate(([ref_name, nuc], np.array(ref1_all_base_count_vectors[ref_name+"_"+nuc]).astype(float)/tot)))
colnames = ['Batch', 'Nucleotide']+list(refs[ref_names[0]]['sequence'])
pe_nucleotide_percentage_summary_df = pd.DataFrame(nuc_pcts, columns=colnames).apply(pd.to_numeric,errors='ignore')

mod_pcts = []
for ref_name in ref_names_for_pe:
tot = float(counts_total[ref_name])
mod_pcts.append(np.concatenate(([ref_name, 'Insertions'], np.array(ref1_all_insertion_count_vectors[ref_name]).astype(np.float)/tot)))
mod_pcts.append(np.concatenate(([ref_name, 'Insertions_Left'], np.array(ref1_all_insertion_left_count_vectors[ref_name]).astype(np.float)/tot)))
mod_pcts.append(np.concatenate(([ref_name, 'Deletions'], np.array(ref1_all_deletion_count_vectors[ref_name]).astype(np.float)/tot)))
mod_pcts.append(np.concatenate(([ref_name, 'Substitutions'], np.array(ref1_all_substitution_count_vectors[ref_name]).astype(np.float)/tot)))
mod_pcts.append(np.concatenate(([ref_name, 'All_modifications'], np.array(ref1_all_indelsub_count_vectors[ref_name]).astype(np.float)/tot)))
mod_pcts.append(np.concatenate(([ref_name, 'Insertions'], np.array(ref1_all_insertion_count_vectors[ref_name]).astype(float)/tot)))
mod_pcts.append(np.concatenate(([ref_name, 'Insertions_Left'], np.array(ref1_all_insertion_left_count_vectors[ref_name]).astype(float)/tot)))
mod_pcts.append(np.concatenate(([ref_name, 'Deletions'], np.array(ref1_all_deletion_count_vectors[ref_name]).astype(float)/tot)))
mod_pcts.append(np.concatenate(([ref_name, 'Substitutions'], np.array(ref1_all_substitution_count_vectors[ref_name]).astype(float)/tot)))
mod_pcts.append(np.concatenate(([ref_name, 'All_modifications'], np.array(ref1_all_indelsub_count_vectors[ref_name]).astype(float)/tot)))
mod_pcts.append(np.concatenate(([ref_name, 'Total'], [counts_total[ref_name]]*refs[ref_names_for_pe[0]]['sequence_length'])))
colnames = ['Batch', 'Modification']+list(refs[ref_names_for_pe[0]]['sequence'])
pe_modification_percentage_summary_df = pd.DataFrame(mod_pcts, columns=colnames).apply(pd.to_numeric,errors='ignore')
Expand Down
8 changes: 4 additions & 4 deletions CRISPResso2/CRISPRessoPlot.py
Original file line number Diff line number Diff line change
Expand Up @@ -2507,7 +2507,7 @@ def __init__(self, data, vmin, vmax, cmap, center, robust, annot, fmt,

if annot is not None:
if per_element_annot_kws is None:
self.per_element_annot_kws=np.empty_like(annot, dtype=np.object)
self.per_element_annot_kws=np.empty_like(annot, dtype=object)
self.per_element_annot_kws[:]=dict()
else:
self.per_element_annot_kws=per_element_annot_kws
Expand Down Expand Up @@ -2641,7 +2641,7 @@ def prep_alleles_table(df_alleles, reference_seq, MAX_N_ROWS, MIN_FREQUENCY):
(row['Reference_Sequence'][i_sub]!=idx[i_sub]) and \
(row['Reference_Sequence'][i_sub]!='-') and\
(idx[i_sub]!='-')]
to_append=np.array([{}]*len(idx), dtype=np.object)
to_append=np.array([{}]*len(idx), dtype=object)
to_append[ idxs_sub]={'weight':'bold', 'color':'black','size':16}
per_element_annot_kws.append(to_append)

Expand Down Expand Up @@ -2693,7 +2693,7 @@ def prep_alleles_table_compare(df_alleles, sample_name_1, sample_name_2, MAX_N_R
(row['Reference_Sequence'][i_sub]!=idx[i_sub]) and \
(row['Reference_Sequence'][i_sub]!='-') and\
(idx[i_sub]!='-')]
to_append=np.array([{}]*len(idx), dtype=np.object)
to_append=np.array([{}]*len(idx), dtype=object)
to_append[ idxs_sub]={'weight':'bold', 'color':'black','size':16}
per_element_annot_kws.append(to_append)

Expand Down Expand Up @@ -3198,7 +3198,7 @@ def plot_nucleotide_quilt_from_folder(crispresso_output_folder,fig_filename_root

mod_pcts = {}
for key in mod_counts:
mod_pcts[key] = np.array(mod_counts[key]).astype(np.float)/float(mod_counts['Total'][0])
mod_pcts[key] = np.array(mod_counts[key]).astype(float)/float(mod_counts['Total'][0])

modification_percentage_summary = []
for mod in ['Insertions', 'Insertions_Left', 'Deletions', 'Substitutions', 'All_modifications']:
Expand Down

0 comments on commit 104866e

Please sign in to comment.