Skip to content

Commit

Permalink
Spark 1271: Co-Group and Group-By should pass Iterable[X]
Browse files Browse the repository at this point in the history
Author: Holden Karau <[email protected]>

Closes apache#242 from holdenk/spark-1320-cogroupandgroupshouldpassiterator and squashes the following commits:

f289536 [Holden Karau] Fix bad merge, should have been Iterable rather than Iterator
77048f8 [Holden Karau] Fix merge up to master
d3fe909 [Holden Karau] use toSeq instead
7a092a3 [Holden Karau] switch resultitr to resultiterable
eb06216 [Holden Karau] maybe I should have had a coffee first. use correct import for guava iterables
c5075aa [Holden Karau] If guava 14 had iterables
2d06e10 [Holden Karau] Fix Java 8 cogroup tests for the new API
11e730c [Holden Karau] Fix streaming tests
66b583d [Holden Karau] Fix the core test suite to compile
4ed579b [Holden Karau] Refactor from iterator to iterable
d052c07 [Holden Karau] Python tests now pass with iterator pandas
3bcd81d [Holden Karau] Revert "Try and make pickling list iterators work"
cd1e81c [Holden Karau] Try and make pickling list iterators work
c60233a [Holden Karau] Start investigating moving to iterators for python API like the Java/Scala one. tl;dr: We will have to write our own iterator since the default one doesn't pickle well
88a5cef [Holden Karau] Fix cogroup test in JavaAPISuite for streaming
a5ee714 [Holden Karau] oops, was checking wrong iterator
e687f21 [Holden Karau] Fix groupbykey test in JavaAPISuite of streaming
ec8cc3e [Holden Karau] Fix test issues\!
4b0eeb9 [Holden Karau] Switch cast in PairDStreamFunctions
fa395c9 [Holden Karau] Revert "Add a join based on the problem in SVD"
ec99e32 [Holden Karau] Revert "Revert this but for now put things in list pandas"
b692868 [Holden Karau] Revert
7e533f7 [Holden Karau] Fix the bug
8a5153a [Holden Karau] Revert me, but we have some stuff to debug
b4e86a9 [Holden Karau] Add a join based on the problem in SVD
c4510e2 [Holden Karau] Revert this but for now put things in list pandas
b4e0b1d [Holden Karau] Fix style issues
71e8b9f [Holden Karau] I really need to stop calling size on iterators, it is the path of sadness.
b1ae51a [Holden Karau] Fix some of the types in the streaming JavaAPI suite. Probably still needs more work
37888ec [Holden Karau] core/tests now pass
249abde [Holden Karau] org.apache.spark.rdd.PairRDDFunctionsSuite passes
6698186 [Holden Karau] Revert "I think this might be a bad rabbit hole. Started work to make CoGroupedRDD use iterator and then went crazy"
fe992fe [Holden Karau] hmmm try and fix up basic operation suite
172705c [Holden Karau] Fix Java API suite
caafa63 [Holden Karau] I think this might be a bad rabbit hole. Started work to make CoGroupedRDD use iterator and then went crazy
88b3329 [Holden Karau] Fix groupbykey to actually give back an iterator
4991af6 [Holden Karau] Fix some tests
be50246 [Holden Karau] Calling size on an iterator is not so good if we want to use it after
687ffbc [Holden Karau] This is the it compiles point of replacing Seq with Iterator and JList with JIterator in the groupby and cogroup signatures
  • Loading branch information
holdenk authored and pwendell committed Apr 9, 2014
1 parent 12c077d commit ce8ec54
Show file tree
Hide file tree
Showing 24 changed files with 252 additions and 153 deletions.
20 changes: 12 additions & 8 deletions bagel/src/main/scala/org/apache/spark/bagel/Bagel.scala
Original file line number Diff line number Diff line change
Expand Up @@ -220,27 +220,31 @@ object Bagel extends Logging {
*/
private def comp[K: Manifest, V <: Vertex, M <: Message[K], C](
sc: SparkContext,
grouped: RDD[(K, (Seq[C], Seq[V]))],
grouped: RDD[(K, (Iterable[C], Iterable[V]))],
compute: (V, Option[C]) => (V, Array[M]),
storageLevel: StorageLevel
): (RDD[(K, (V, Array[M]))], Int, Int) = {
var numMsgs = sc.accumulator(0)
var numActiveVerts = sc.accumulator(0)
val processed = grouped.flatMapValues {
case (_, vs) if vs.size == 0 => None
case (c, vs) =>
val processed = grouped.mapValues(x => (x._1.iterator, x._2.iterator))
.flatMapValues {
case (_, vs) if !vs.hasNext => None
case (c, vs) => {
val (newVert, newMsgs) =
compute(vs(0), c match {
case Seq(comb) => Some(comb)
case Seq() => None
})
compute(vs.next,
c.hasNext match {
case true => Some(c.next)
case false => None
}
)

numMsgs += newMsgs.size
if (newVert.active) {
numActiveVerts += 1
}

Some((newVert, newMsgs))
}
}.persist(storageLevel)

// Force evaluation of processed RDD for accurate performance measurements
Expand Down
36 changes: 19 additions & 17 deletions core/src/main/scala/org/apache/spark/api/java/JavaPairRDD.scala
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,7 @@
package org.apache.spark.api.java

import java.util.{Comparator, List => JList}
import java.lang.{Iterable => JIterable}

import scala.collection.JavaConversions._
import scala.reflect.ClassTag
Expand Down Expand Up @@ -250,14 +251,14 @@ class JavaPairRDD[K, V](val rdd: RDD[(K, V)])
* Group the values for each key in the RDD into a single sequence. Allows controlling the
* partitioning of the resulting key-value pair RDD by passing a Partitioner.
*/
def groupByKey(partitioner: Partitioner): JavaPairRDD[K, JList[V]] =
def groupByKey(partitioner: Partitioner): JavaPairRDD[K, JIterable[V]] =
fromRDD(groupByResultToJava(rdd.groupByKey(partitioner)))

/**
* Group the values for each key in the RDD into a single sequence. Hash-partitions the
* resulting RDD with into `numPartitions` partitions.
*/
def groupByKey(numPartitions: Int): JavaPairRDD[K, JList[V]] =
def groupByKey(numPartitions: Int): JavaPairRDD[K, JIterable[V]] =
fromRDD(groupByResultToJava(rdd.groupByKey(numPartitions)))

/**
Expand Down Expand Up @@ -367,7 +368,7 @@ class JavaPairRDD[K, V](val rdd: RDD[(K, V)])
* Group the values for each key in the RDD into a single sequence. Hash-partitions the
* resulting RDD with the existing partitioner/parallelism level.
*/
def groupByKey(): JavaPairRDD[K, JList[V]] =
def groupByKey(): JavaPairRDD[K, JIterable[V]] =
fromRDD(groupByResultToJava(rdd.groupByKey()))

/**
Expand Down Expand Up @@ -462,55 +463,55 @@ class JavaPairRDD[K, V](val rdd: RDD[(K, V)])
* list of values for that key in `this` as well as `other`.
*/
def cogroup[W](other: JavaPairRDD[K, W], partitioner: Partitioner)
: JavaPairRDD[K, (JList[V], JList[W])] =
: JavaPairRDD[K, (JIterable[V], JIterable[W])] =
fromRDD(cogroupResultToJava(rdd.cogroup(other, partitioner)))

/**
* For each key k in `this` or `other1` or `other2`, return a resulting RDD that contains a
* tuple with the list of values for that key in `this`, `other1` and `other2`.
*/
def cogroup[W1, W2](other1: JavaPairRDD[K, W1], other2: JavaPairRDD[K, W2],
partitioner: Partitioner): JavaPairRDD[K, (JList[V], JList[W1], JList[W2])] =
partitioner: Partitioner): JavaPairRDD[K, (JIterable[V], JIterable[W1], JIterable[W2])] =
fromRDD(cogroupResult2ToJava(rdd.cogroup(other1, other2, partitioner)))

/**
* For each key k in `this` or `other`, return a resulting RDD that contains a tuple with the
* list of values for that key in `this` as well as `other`.
*/
def cogroup[W](other: JavaPairRDD[K, W]): JavaPairRDD[K, (JList[V], JList[W])] =
def cogroup[W](other: JavaPairRDD[K, W]): JavaPairRDD[K, (JIterable[V], JIterable[W])] =
fromRDD(cogroupResultToJava(rdd.cogroup(other)))

/**
* For each key k in `this` or `other1` or `other2`, return a resulting RDD that contains a
* tuple with the list of values for that key in `this`, `other1` and `other2`.
*/
def cogroup[W1, W2](other1: JavaPairRDD[K, W1], other2: JavaPairRDD[K, W2])
: JavaPairRDD[K, (JList[V], JList[W1], JList[W2])] =
: JavaPairRDD[K, (JIterable[V], JIterable[W1], JIterable[W2])] =
fromRDD(cogroupResult2ToJava(rdd.cogroup(other1, other2)))

/**
* For each key k in `this` or `other`, return a resulting RDD that contains a tuple with the
* list of values for that key in `this` as well as `other`.
*/
def cogroup[W](other: JavaPairRDD[K, W], numPartitions: Int)
: JavaPairRDD[K, (JList[V], JList[W])] =
: JavaPairRDD[K, (JIterable[V], JIterable[W])] =
fromRDD(cogroupResultToJava(rdd.cogroup(other, numPartitions)))

/**
* For each key k in `this` or `other1` or `other2`, return a resulting RDD that contains a
* tuple with the list of values for that key in `this`, `other1` and `other2`.
*/
def cogroup[W1, W2](other1: JavaPairRDD[K, W1], other2: JavaPairRDD[K, W2], numPartitions: Int)
: JavaPairRDD[K, (JList[V], JList[W1], JList[W2])] =
: JavaPairRDD[K, (JIterable[V], JIterable[W1], JIterable[W2])] =
fromRDD(cogroupResult2ToJava(rdd.cogroup(other1, other2, numPartitions)))

/** Alias for cogroup. */
def groupWith[W](other: JavaPairRDD[K, W]): JavaPairRDD[K, (JList[V], JList[W])] =
def groupWith[W](other: JavaPairRDD[K, W]): JavaPairRDD[K, (JIterable[V], JIterable[W])] =
fromRDD(cogroupResultToJava(rdd.groupWith(other)))

/** Alias for cogroup. */
def groupWith[W1, W2](other1: JavaPairRDD[K, W1], other2: JavaPairRDD[K, W2])
: JavaPairRDD[K, (JList[V], JList[W1], JList[W2])] =
: JavaPairRDD[K, (JIterable[V], JIterable[W1], JIterable[W2])] =
fromRDD(cogroupResult2ToJava(rdd.groupWith(other1, other2)))

/**
Expand Down Expand Up @@ -695,21 +696,22 @@ class JavaPairRDD[K, V](val rdd: RDD[(K, V)])

object JavaPairRDD {
private[spark]
def groupByResultToJava[K: ClassTag, T](rdd: RDD[(K, Seq[T])]): RDD[(K, JList[T])] = {
rddToPairRDDFunctions(rdd).mapValues(seqAsJavaList)
def groupByResultToJava[K: ClassTag, T](rdd: RDD[(K, Iterable[T])]): RDD[(K, JIterable[T])] = {
rddToPairRDDFunctions(rdd).mapValues(asJavaIterable)
}

private[spark]
def cogroupResultToJava[K: ClassTag, V, W](
rdd: RDD[(K, (Seq[V], Seq[W]))]): RDD[(K, (JList[V], JList[W]))] = {
rddToPairRDDFunctions(rdd).mapValues(x => (seqAsJavaList(x._1), seqAsJavaList(x._2)))
rdd: RDD[(K, (Iterable[V], Iterable[W]))]): RDD[(K, (JIterable[V], JIterable[W]))] = {
rddToPairRDDFunctions(rdd).mapValues(x => (asJavaIterable(x._1), asJavaIterable(x._2)))
}

private[spark]
def cogroupResult2ToJava[K: ClassTag, V, W1, W2](
rdd: RDD[(K, (Seq[V], Seq[W1], Seq[W2]))]): RDD[(K, (JList[V], JList[W1], JList[W2]))] = {
rdd: RDD[(K, (Iterable[V], Iterable[W1], Iterable[W2]))])
: RDD[(K, (JIterable[V], JIterable[W1], JIterable[W2]))] = {
rddToPairRDDFunctions(rdd)
.mapValues(x => (seqAsJavaList(x._1), seqAsJavaList(x._2), seqAsJavaList(x._3)))
.mapValues(x => (asJavaIterable(x._1), asJavaIterable(x._2), asJavaIterable(x._3)))
}

def fromRDD[K: ClassTag, V: ClassTag](rdd: RDD[(K, V)]): JavaPairRDD[K, V] = {
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@

package org.apache.spark.api.java

import java.util.{Comparator, Iterator => JIterator, List => JList}
import java.util.{Comparator, List => JList, Iterator => JIterator}
import java.lang.{Iterable => JIterable}

import scala.collection.JavaConversions._
Expand Down Expand Up @@ -204,7 +204,7 @@ trait JavaRDDLike[T, This <: JavaRDDLike[T, This]] extends Serializable {
* Return an RDD of grouped elements. Each group consists of a key and a sequence of elements
* mapping to that key.
*/
def groupBy[K](f: JFunction[T, K]): JavaPairRDD[K, JList[T]] = {
def groupBy[K](f: JFunction[T, K]): JavaPairRDD[K, JIterable[T]] = {
implicit val ctagK: ClassTag[K] = fakeClassTag
implicit val ctagV: ClassTag[JList[T]] = fakeClassTag
JavaPairRDD.fromRDD(groupByResultToJava(rdd.groupBy(f)(fakeClassTag)))
Expand All @@ -214,7 +214,7 @@ trait JavaRDDLike[T, This <: JavaRDDLike[T, This]] extends Serializable {
* Return an RDD of grouped elements. Each group consists of a key and a sequence of elements
* mapping to that key.
*/
def groupBy[K](f: JFunction[T, K], numPartitions: Int): JavaPairRDD[K, JList[T]] = {
def groupBy[K](f: JFunction[T, K], numPartitions: Int): JavaPairRDD[K, JIterable[T]] = {
implicit val ctagK: ClassTag[K] = fakeClassTag
implicit val ctagV: ClassTag[JList[T]] = fakeClassTag
JavaPairRDD.fromRDD(groupByResultToJava(rdd.groupBy(f, numPartitions)(fakeClassTag[K])))
Expand Down
39 changes: 21 additions & 18 deletions core/src/main/scala/org/apache/spark/rdd/PairRDDFunctions.scala
Original file line number Diff line number Diff line change
Expand Up @@ -261,7 +261,7 @@ class PairRDDFunctions[K: ClassTag, V: ClassTag](self: RDD[(K, V)])
* Group the values for each key in the RDD into a single sequence. Allows controlling the
* partitioning of the resulting key-value pair RDD by passing a Partitioner.
*/
def groupByKey(partitioner: Partitioner): RDD[(K, Seq[V])] = {
def groupByKey(partitioner: Partitioner): RDD[(K, Iterable[V])] = {
// groupByKey shouldn't use map side combine because map side combine does not
// reduce the amount of data shuffled and requires all map side data be inserted
// into a hash table, leading to more objects in the old gen.
Expand All @@ -270,14 +270,14 @@ class PairRDDFunctions[K: ClassTag, V: ClassTag](self: RDD[(K, V)])
def mergeCombiners(c1: ArrayBuffer[V], c2: ArrayBuffer[V]) = c1 ++ c2
val bufs = combineByKey[ArrayBuffer[V]](
createCombiner _, mergeValue _, mergeCombiners _, partitioner, mapSideCombine=false)
bufs.asInstanceOf[RDD[(K, Seq[V])]]
bufs.mapValues(_.toIterable)
}

/**
* Group the values for each key in the RDD into a single sequence. Hash-partitions the
* resulting RDD with into `numPartitions` partitions.
*/
def groupByKey(numPartitions: Int): RDD[(K, Seq[V])] = {
def groupByKey(numPartitions: Int): RDD[(K, Iterable[V])] = {
groupByKey(new HashPartitioner(numPartitions))
}

Expand All @@ -298,7 +298,7 @@ class PairRDDFunctions[K: ClassTag, V: ClassTag](self: RDD[(K, V)])
*/
def join[W](other: RDD[(K, W)], partitioner: Partitioner): RDD[(K, (V, W))] = {
this.cogroup(other, partitioner).flatMapValues { case (vs, ws) =>
for (v <- vs.iterator; w <- ws.iterator) yield (v, w)
for (v <- vs; w <- ws) yield (v, w)
}
}

Expand All @@ -311,9 +311,9 @@ class PairRDDFunctions[K: ClassTag, V: ClassTag](self: RDD[(K, V)])
def leftOuterJoin[W](other: RDD[(K, W)], partitioner: Partitioner): RDD[(K, (V, Option[W]))] = {
this.cogroup(other, partitioner).flatMapValues { case (vs, ws) =>
if (ws.isEmpty) {
vs.iterator.map(v => (v, None))
vs.map(v => (v, None))
} else {
for (v <- vs.iterator; w <- ws.iterator) yield (v, Some(w))
for (v <- vs; w <- ws) yield (v, Some(w))
}
}
}
Expand All @@ -328,9 +328,9 @@ class PairRDDFunctions[K: ClassTag, V: ClassTag](self: RDD[(K, V)])
: RDD[(K, (Option[V], W))] = {
this.cogroup(other, partitioner).flatMapValues { case (vs, ws) =>
if (vs.isEmpty) {
ws.iterator.map(w => (None, w))
ws.map(w => (None, w))
} else {
for (v <- vs.iterator; w <- ws.iterator) yield (Some(v), w)
for (v <- vs; w <- ws) yield (Some(v), w)
}
}
}
Expand Down Expand Up @@ -358,7 +358,7 @@ class PairRDDFunctions[K: ClassTag, V: ClassTag](self: RDD[(K, V)])
* Group the values for each key in the RDD into a single sequence. Hash-partitions the
* resulting RDD with the existing partitioner/parallelism level.
*/
def groupByKey(): RDD[(K, Seq[V])] = {
def groupByKey(): RDD[(K, Iterable[V])] = {
groupByKey(defaultPartitioner(self))
}

Expand Down Expand Up @@ -453,7 +453,8 @@ class PairRDDFunctions[K: ClassTag, V: ClassTag](self: RDD[(K, V)])
* For each key k in `this` or `other`, return a resulting RDD that contains a tuple with the
* list of values for that key in `this` as well as `other`.
*/
def cogroup[W](other: RDD[(K, W)], partitioner: Partitioner): RDD[(K, (Seq[V], Seq[W]))] = {
def cogroup[W](other: RDD[(K, W)], partitioner: Partitioner)
: RDD[(K, (Iterable[V], Iterable[W]))] = {
if (partitioner.isInstanceOf[HashPartitioner] && getKeyClass().isArray) {
throw new SparkException("Default partitioner cannot partition array keys.")
}
Expand All @@ -468,21 +469,23 @@ class PairRDDFunctions[K: ClassTag, V: ClassTag](self: RDD[(K, V)])
* tuple with the list of values for that key in `this`, `other1` and `other2`.
*/
def cogroup[W1, W2](other1: RDD[(K, W1)], other2: RDD[(K, W2)], partitioner: Partitioner)
: RDD[(K, (Seq[V], Seq[W1], Seq[W2]))] = {
: RDD[(K, (Iterable[V], Iterable[W1], Iterable[W2]))] = {
if (partitioner.isInstanceOf[HashPartitioner] && getKeyClass().isArray) {
throw new SparkException("Default partitioner cannot partition array keys.")
}
val cg = new CoGroupedRDD[K](Seq(self, other1, other2), partitioner)
cg.mapValues { case Seq(vs, w1s, w2s) =>
(vs.asInstanceOf[Seq[V]], w1s.asInstanceOf[Seq[W1]], w2s.asInstanceOf[Seq[W2]])
(vs.asInstanceOf[Seq[V]],
w1s.asInstanceOf[Seq[W1]],
w2s.asInstanceOf[Seq[W2]])
}
}

/**
* For each key k in `this` or `other`, return a resulting RDD that contains a tuple with the
* list of values for that key in `this` as well as `other`.
*/
def cogroup[W](other: RDD[(K, W)]): RDD[(K, (Seq[V], Seq[W]))] = {
def cogroup[W](other: RDD[(K, W)]): RDD[(K, (Iterable[V], Iterable[W]))] = {
cogroup(other, defaultPartitioner(self, other))
}

Expand All @@ -491,15 +494,15 @@ class PairRDDFunctions[K: ClassTag, V: ClassTag](self: RDD[(K, V)])
* tuple with the list of values for that key in `this`, `other1` and `other2`.
*/
def cogroup[W1, W2](other1: RDD[(K, W1)], other2: RDD[(K, W2)])
: RDD[(K, (Seq[V], Seq[W1], Seq[W2]))] = {
: RDD[(K, (Iterable[V], Iterable[W1], Iterable[W2]))] = {
cogroup(other1, other2, defaultPartitioner(self, other1, other2))
}

/**
* For each key k in `this` or `other`, return a resulting RDD that contains a tuple with the
* list of values for that key in `this` as well as `other`.
*/
def cogroup[W](other: RDD[(K, W)], numPartitions: Int): RDD[(K, (Seq[V], Seq[W]))] = {
def cogroup[W](other: RDD[(K, W)], numPartitions: Int): RDD[(K, (Iterable[V], Iterable[W]))] = {
cogroup(other, new HashPartitioner(numPartitions))
}

Expand All @@ -508,18 +511,18 @@ class PairRDDFunctions[K: ClassTag, V: ClassTag](self: RDD[(K, V)])
* tuple with the list of values for that key in `this`, `other1` and `other2`.
*/
def cogroup[W1, W2](other1: RDD[(K, W1)], other2: RDD[(K, W2)], numPartitions: Int)
: RDD[(K, (Seq[V], Seq[W1], Seq[W2]))] = {
: RDD[(K, (Iterable[V], Iterable[W1], Iterable[W2]))] = {
cogroup(other1, other2, new HashPartitioner(numPartitions))
}

/** Alias for cogroup. */
def groupWith[W](other: RDD[(K, W)]): RDD[(K, (Seq[V], Seq[W]))] = {
def groupWith[W](other: RDD[(K, W)]): RDD[(K, (Iterable[V], Iterable[W]))] = {
cogroup(other, defaultPartitioner(self, other))
}

/** Alias for cogroup. */
def groupWith[W1, W2](other1: RDD[(K, W1)], other2: RDD[(K, W2)])
: RDD[(K, (Seq[V], Seq[W1], Seq[W2]))] = {
: RDD[(K, (Iterable[V], Iterable[W1], Iterable[W2]))] = {
cogroup(other1, other2, defaultPartitioner(self, other1, other2))
}

Expand Down
6 changes: 3 additions & 3 deletions core/src/main/scala/org/apache/spark/rdd/RDD.scala
Original file line number Diff line number Diff line change
Expand Up @@ -438,20 +438,20 @@ abstract class RDD[T: ClassTag](
/**
* Return an RDD of grouped items.
*/
def groupBy[K: ClassTag](f: T => K): RDD[(K, Seq[T])] =
def groupBy[K: ClassTag](f: T => K): RDD[(K, Iterable[T])] =
groupBy[K](f, defaultPartitioner(this))

/**
* Return an RDD of grouped elements. Each group consists of a key and a sequence of elements
* mapping to that key.
*/
def groupBy[K: ClassTag](f: T => K, numPartitions: Int): RDD[(K, Seq[T])] =
def groupBy[K: ClassTag](f: T => K, numPartitions: Int): RDD[(K, Iterable[T])] =
groupBy(f, new HashPartitioner(numPartitions))

/**
* Return an RDD of grouped items.
*/
def groupBy[K: ClassTag](f: T => K, p: Partitioner): RDD[(K, Seq[T])] = {
def groupBy[K: ClassTag](f: T => K, p: Partitioner): RDD[(K, Iterable[T])] = {
val cleanF = sc.clean(f)
this.map(t => (cleanF(t), t)).groupByKey(p)
}
Expand Down
Loading

0 comments on commit ce8ec54

Please sign in to comment.