-
Notifications
You must be signed in to change notification settings - Fork 4
Interacting uncertainties
Gijsbert Werner edited this page Sep 4, 2017
·
8 revisions
The 'sensiPhy' package can perform sensitivity analysis by interacting multiple types of uncertainty. Please see the Online tutorial introductory page to check all available functions.
'sensiPhy' implements functions to study interactions of both phylogenetic uncertainty (tree-functions) and data uncertainty (intra-functions) with sampling uncertainty (clade
, influ
, and samp
), as well as interactions between data and phylogenetic uncertainty (tree_intra
).
Both intra
and tree
methods can be used together with all other uncertainties to evaluate the interaction between two types of uncertainty at the same time.
data(alien)
# run analysis:
tree_influ <- tree_influ_phylm(log(gestaLen) ~ log(adultMass), phy = alien$phy,
data = alien$data, n.tree = 5)
# To check summary results:
summary(tree_influ)
# Visual diagnostics
sensi_plot(tree_influ)
sensi_plot(tree_influ, graphs = 1)
sensi_plot(tree_influ, graphs = 2)
data(primates)
# run analysis:
clade_tree <- tree_clade_phylm(log(sexMaturity) ~ log(adultMass),
phy = primates$phy, data = primates$data,
clade.col = "family",
n.sim = 50, n.tree = 5)
# To check summary results and most influential clades:
summary(clade_tree)
# Visual diagnostics for clade removal:
sensi_plot(clade_tree)
# Specify which clade removal to plot:
sensi_plot(clade_tree, "Cercopithecidae")
sensi_plot(clade_tree, clade = "Cebidae")
# Load data:
data(alien)
# Run analysis:
samp <- tree_samp_phylm(log(gestaLen) ~ log(adultMass), phy = alien$phy,
data = alien$data, n.tree = 5, n.sim=30)
summary(samp)
head(samp$sensi.estimates)
# Visual diagnostics
sensi_plot(samp)
sensi_plot(samp, graphs = 1)
sensi_plot(samp, graphs = 2)
# Load data:
data(alien)
# run PGLS accounting for intraspecific and phylogenetic variation:
intra.tree <- tree_intra_phylm(gestaLen ~ adultMass, data = alien$data, phy = alien$phy,
Vy = "SD_gesta", n.intra = 10, n.tree = 30,
y.transf = log, x.transf = log)
# To check summary results:
summary(intra.tree)
# Visual diagnostics
sensi_plot(intra.tree, uncer.type = "all") #or uncer.type = "tree", uncer.type = "intra"