Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Feature] Analog noise #293

Merged
merged 17 commits into from
Nov 20, 2024
40 changes: 40 additions & 0 deletions docs/noise.md
Original file line number Diff line number Diff line change
Expand Up @@ -123,6 +123,46 @@ def fig_to_html(fig: Figure) -> str: # markdown-exec: hide
print(fig_to_html(plt.gcf())) # markdown-exec: hide
```

## Analog Noise

Analog noise is made possible by specifying `noise_operators` in `HamiltonianEvolution`:

```python exec="on" source="material-block"
import torch
from pyqtorch import uniform_state, HamiltonianEvolution
from pyqtorch.matrices import DEFAULT_MATRIX_DTYPE
from pyqtorch.noise import Depolarizing
from pyqtorch.utils import SolverType

n_qubits = 2
qubit_targets = list(range(n_qubits))

# Random hermitian hamiltonian
matrix = torch.rand(2**n_qubits, 2**n_qubits, dtype=DEFAULT_MATRIX_DTYPE)
hermitian_matrix = matrix + matrix.T.conj()

time = torch.tensor([1.0])
time_symbol = "t"
dur_val = torch.rand(1)
list_ops = Depolarizing(0, error_probability=0.1).tensor(2)
list_ops = [op.squeeze() for op in list_ops]
solver = SolverType.DP5_ME
n_steps = 5

hamiltonian_evolution = HamiltonianEvolution(hermitian_matrix, time_symbol, qubit_targets,
duration=dur_val, steps=n_steps,
solver=solver, noise_operators=list_ops,)

# Starting from a uniform state
psi_start = uniform_state(n_qubits)

# Returns the evolved state
psi_end = hamiltonian_evolution(state = psi_start, values={time_symbol: time})

print(psi_end)


```

## Readout errors

Expand Down
2 changes: 1 addition & 1 deletion pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@ build-backend = "hatchling.build"
name = "pyqtorch"
description = "An efficient, large-scale emulator designed for quantum machine learning, seamlessly integrated with a PyTorch backend. Please refer to https://pyqtorch.readthedocs.io/en/latest/ for setup and usage info, along with the full documentation."
readme = "README.md"
version = "1.5.2"
version = "1.5.3"
chMoussa marked this conversation as resolved.
Show resolved Hide resolved
requires-python = ">=3.8,<3.13"
license = { text = "Apache 2.0" }
keywords = ["quantum"]
Expand Down
56 changes: 44 additions & 12 deletions pyqtorch/hamiltonians/evolution.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,14 +16,17 @@
from pyqtorch.embed import ConcretizedCallable, Embedding
from pyqtorch.primitives import Primitive
from pyqtorch.quantum_operation import QuantumOperation
from pyqtorch.time_dependent.mesolve import mesolve
from pyqtorch.time_dependent.sesolve import sesolve
from pyqtorch.utils import (
ATOL,
DensityMatrix,
Operator,
SolverType,
State,
StrEnum,
_round_operator,
density_mat,
expand_operator,
finitediff,
is_diag,
Expand Down Expand Up @@ -140,6 +143,11 @@ class HamiltonianEvolution(Sequence):
operations: List of operations.
cache_length: LRU cache cache_length evolution operators for given set
of parameter values.
duration: Total duration for evolving when using a solver.
steps: Number of steps to use when using solver.
solver: Time-dependent Lindblad master equation solver.
noise_operators: List of tensors or Kraus operators adding analog noise
when solving with a Shrodinger equation solver.
"""

def __init__(
Expand All @@ -152,6 +160,7 @@ def __init__(
steps: int = 100,
solver: SolverType = SolverType.DP5_SE,
use_sparse: bool = False,
noise_operators: list[Tensor] = list(),
):
"""Initializes the HamiltonianEvolution.
Depending on the generator argument, set the type and set the right generator getter.
Expand All @@ -162,7 +171,13 @@ def __init__(
qubit_support: The qubits the operator acts on. If generator is a quantum
operation or sequence of operations,
it will be inferred from the generator.
generator_parametric: Whether the generator is parametric or not.
cache_length: LRU cache cache_length evolution operators for given set
of parameter values.
duration: Total duration for evolving when using a solver.
steps: Number of steps to use when using solver.
solver: Time-dependent Lindblad master equation solver.
noise_operators: List of tensors or Kraus operators adding analog noise
when solving with a Shrodinger equation solver.
"""

self.solver_type = solver
Expand Down Expand Up @@ -245,6 +260,8 @@ def __init__(
self._cache_hamiltonian_evo: dict[str, Tensor] = dict()
self.cache_length = cache_length

self.noise_operators: list[Tensor] = noise_operators

@property
def generator(self) -> ModuleList:
"""Returns the operations making the generator.
Expand Down Expand Up @@ -413,18 +430,33 @@ def Ht(t: torch.Tensor) -> torch.Tensor:
.squeeze(2)
)

sol = sesolve(
Ht,
torch.flatten(state, start_dim=0, end_dim=-2),
t_grid,
self.solver_type,
options={"use_sparse": self.use_sparse},
)

# Retrieve the last state of shape (2**n_qubits, batch_size)
state = sol.states[-1]
if len(self.noise_operators) == 0:
sol = sesolve(
Ht,
torch.flatten(state, start_dim=0, end_dim=-2),
t_grid,
self.solver_type,
options={"use_sparse": self.use_sparse},
)

return state.reshape([2] * n_qubits + [batch_size])
# Retrieve the last state of shape (2**n_qubits, batch_size)
# and reshape
state = sol.states[-1].reshape([2] * n_qubits + [batch_size])
else:
if not isinstance(state, DensityMatrix):
state = density_mat(state)
sol = mesolve(
Ht,
state,
self.noise_operators,
t_grid,
self.solver_type,
options={"use_sparse": self.use_sparse},
)
# Retrieve the last density matrix
# and reshape
state = sol.states[-1]
return state

def forward(
self,
Expand Down
16 changes: 11 additions & 5 deletions pyqtorch/noise/gates.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,12 @@
from pyqtorch.apply import apply_operator_dm
from pyqtorch.embed import Embedding
from pyqtorch.matrices import DEFAULT_MATRIX_DTYPE, IMAT, XMAT, YMAT, ZMAT
from pyqtorch.utils import DensityMatrix, density_mat, qubit_support_as_tuple
from pyqtorch.utils import (
DensityMatrix,
density_mat,
promote_operator,
qubit_support_as_tuple,
)


class Noise(torch.nn.Module):
Expand All @@ -35,11 +40,12 @@ def extra_repr(self) -> str:
def kraus_operators(self) -> list[Tensor]:
return [getattr(self, f"kraus_{i}") for i in range(len(self._buffers))]

def tensor(
self,
) -> list[Tensor]:
def tensor(self, n_qubit_support: int | None = None) -> list[Tensor]:
# Since PyQ expects tensor.Size = [2**n_qubits, 2**n_qubits,batch_size].
return [kraus_op.unsqueeze(2) for kraus_op in self.kraus_operators]
t_ops = [kraus_op.unsqueeze(2) for kraus_op in self.kraus_operators]
if n_qubit_support is None:
return t_ops
return [promote_operator(t, self.target, n_qubit_support) for t in t_ops]

def forward(
self,
Expand Down
59 changes: 58 additions & 1 deletion tests/test_analog.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,10 +18,12 @@
XMAT,
ZMAT,
)
from pyqtorch.noise import Depolarizing
from pyqtorch.utils import (
ATOL,
RTOL,
SolverType,
density_mat,
is_normalized,
operator_kron,
overlap,
Expand Down Expand Up @@ -316,6 +318,7 @@ def test_timedependent(

# simulate with time-dependent solver
t_points = torch.linspace(0, dur_val[0], n_steps)

psi_solver = pyq.sesolve(
torch_hamiltonian,
psi_start.reshape(-1, batch_size),
Expand All @@ -342,7 +345,61 @@ def test_timedependent(
state=psi_start, values=values, embedding=embedding
).reshape(-1, batch_size)

assert torch.allclose(psi_solver, psi_hamevo, rtol=RTOL, atol=ATOL)
assert torch.allclose(psi_solver, psi_hamevo, rtol=RTOL, atol=1.0e-3)


@pytest.mark.parametrize("duration", [torch.rand(1), "duration"])
@pytest.mark.parametrize(
"batchsize",
[
1,
3,
],
)
def test_timedependent_with_noise(
tparam: str,
param_y: float,
duration: float,
batchsize: int,
n_steps: int,
torch_hamiltonian: Callable,
hamevo_generator: Sequence,
sin: tuple,
sq: tuple,
) -> None:

psi_start = density_mat(random_state(2, batchsize))
dur_val = duration if isinstance(duration, torch.Tensor) else torch.rand(1)

# simulate with time-dependent solver
t_points = torch.linspace(0, dur_val[0], n_steps)

# No batchsiwe for the jump operators
chMoussa marked this conversation as resolved.
Show resolved Hide resolved
list_ops = Depolarizing(0, error_probability=0.1).tensor(2)
list_ops = [op.squeeze() for op in list_ops]
solver = SolverType.DP5_ME
psi_solver = pyq.mesolve(
torch_hamiltonian, psi_start, list_ops, t_points, solver
).states[-1]

# simulate with HamiltonianEvolution
embedding = pyq.Embedding(
tparam_name=tparam,
var_to_call={sin[0]: sin[1], sq[0]: sq[1]},
)
hamiltonian_evolution = pyq.HamiltonianEvolution(
generator=hamevo_generator,
time=tparam,
duration=duration,
steps=n_steps,
solver=solver,
noise_operators=list_ops,
)
values = {"y": param_y, "duration": dur_val}
psi_hamevo = hamiltonian_evolution(
state=psi_start, values=values, embedding=embedding
)
assert torch.allclose(psi_solver, psi_hamevo, rtol=RTOL, atol=1.0e-3)


@pytest.mark.parametrize("n_qubits", [2, 4, 6])
Expand Down