generated from pypa/sampleproject
-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
227 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,227 @@ | ||
# %% | ||
""" | ||
Compare Fourier Model and T2* Model for Stack of Spirals trajectory | ||
=========================================== | ||
This examples walks through the elementary components of SNAKE. | ||
Here we proceed step by step and use the Python interface. A more integrated | ||
alternative is to use the CLI ``snake-main`` | ||
""" | ||
|
||
# %% | ||
|
||
# Imports | ||
from snake.core.simulation import SimConfig, default_hardware, GreConfig | ||
from snake.core.phantom import Phantom | ||
from snake.core.smaps import get_smaps | ||
from snake.core.sampling import StackOfSpiralSampler | ||
|
||
from mrinufft import get_operator | ||
|
||
|
||
# For faster computation, try to use the GPU | ||
|
||
NUFFT_BACKEND = "stacked-gpunufft" | ||
COMPUTE_BACKEND = "cupy" | ||
|
||
try: | ||
import cupy as cp | ||
|
||
if not cp.cupy.cuda.runtime.getDeviceCount(): | ||
raise ValueError("No CUDA Device found") | ||
|
||
get_operator("gpunufft") | ||
except Exception: | ||
try: | ||
get_operator("finufft") | ||
except ValueError as e: | ||
raise ValueError("No NUFFT backend available") from e | ||
|
||
NUFFT_BACKEND = "finufft" | ||
COMPUTE_BACKEND = "numpy" | ||
|
||
print( | ||
f"Using NUFFT backend: {NUFFT_BACKEND}", f"Using Compute backend: {COMPUTE_BACKEND}" | ||
) | ||
# %% | ||
|
||
sim_conf = SimConfig( | ||
max_sim_time=3, | ||
seq=GreConfig(TR=50, TE=22, FA=12), | ||
hardware=default_hardware, | ||
fov_mm=(181, 217, 181), | ||
shape=(60, 72, 60), | ||
) | ||
sim_conf.hardware.n_coils = 1 # Update to get multi coil results. | ||
sim_conf.hardware.field_strength = 7 | ||
phantom = Phantom.from_brainweb(sub_id=4, sim_conf=sim_conf, tissue_file="tissue_7T") | ||
|
||
|
||
# %% | ||
phantom.masks.shape | ||
|
||
# %% | ||
# Setting up Acquisition Pattern and Initializing Result file. | ||
# ------------------------------------------------------------ | ||
|
||
# The next piece of simulation is the acquisition trajectory. | ||
# Here nothing fancy, we are using a stack of spiral, that samples a 3D | ||
# k-space, with an acceleration factor AF=4 on the z-axis. | ||
|
||
sampler = StackOfSpiralSampler( | ||
accelz=1, | ||
acsz=0.1, | ||
orderz="top-down", | ||
nb_revolutions=12, | ||
obs_time_ms=30, | ||
constant=True, | ||
) | ||
|
||
smaps = None | ||
if sim_conf.hardware.n_coils > 1: | ||
smaps = get_smaps(sim_conf.shape, n_coils=sim_conf.hardware.n_coils) | ||
|
||
|
||
# %% | ||
# The acquisition trajectory looks like this | ||
traj = sampler.get_next_frame(sim_conf) | ||
print(traj.shape) | ||
from mrinufft.trajectories.display import display_3D_trajectory | ||
|
||
display_3D_trajectory(traj) | ||
|
||
# %% | ||
# Adding noise in Image | ||
# ---------------------- | ||
|
||
from snake.core.handlers.noise import NoiseHandler | ||
|
||
noise_handler = NoiseHandler(variance=0.01) | ||
|
||
# %% | ||
# Acquisition with Cartesian Engine | ||
# --------------------------------- | ||
# | ||
# The generated file ``example_EPI.mrd`` does not contains any k-space data for | ||
# now, only the sampling trajectory. let's put some in. In order to do so, we | ||
# need to setup the **acquisition engine** that models the MR physics, and get | ||
# sampled at the specified k-space trajectory. | ||
# | ||
# SNAKE comes with two models for the MR Physics: | ||
# | ||
# - model="simple" :: Each k-space shot acquires a constant signal, which is the | ||
# image contrast at TE. | ||
# - model="T2s" :: Each k-space shot is degraded by the T2* decay induced by | ||
# each tissue. | ||
|
||
# Here we will use the "simple" model, which is faster. | ||
# | ||
# SNAKE's Engine are capable of simulating the data in parallel, by distributing | ||
# the shots to be acquired to a set of processes. To do so , we need to specify | ||
# the number of jobs that will run in parallel, as well as the size of a job. | ||
# Setting the job size and the number of jobs can have a great impact on total | ||
# runtime and memory consumption. | ||
# | ||
# Here, we have a single frame to acquire with 60 frames (one EPI per slice), so | ||
# a single worker will do. | ||
|
||
from snake.core.engine import NufftAcquisitionEngine | ||
|
||
# engine = NufftAcquisitionEngine(model="simple", snr=30000, slice_2d=True) | ||
|
||
# engine( | ||
# "example_spiral_2D.mrd", | ||
# sampler, | ||
# phantom, | ||
# sim_conf, | ||
# handlers=[noise_handler], | ||
# smaps=smaps, | ||
# worker_chunk_size=60, | ||
# n_workers=1, | ||
# nufft_backend=NUFFT_BACKEND, | ||
# ) | ||
engine_t2s = NufftAcquisitionEngine(model="T2s", snr=30000, slice_2d=True) | ||
|
||
engine_t2s( | ||
"example_spiral_t2s_2D.mrd", | ||
sampler, | ||
phantom, | ||
sim_conf, | ||
handlers=[noise_handler], | ||
worker_chunk_size=60, | ||
n_workers=1, | ||
nufft_backend=NUFFT_BACKEND, | ||
) | ||
|
||
# %% | ||
|
||
from snake.mrd_utils import NonCartesianFrameDataLoader | ||
|
||
with NonCartesianFrameDataLoader("example_spiral_t2s_2D.mrd") as data_loader: | ||
traj, kspace_data = data_loader.get_kspace_frame(0, shot_dim=True) | ||
|
||
# %% | ||
kspace_data = kspace_data.squeeze() | ||
|
||
# %% | ||
kspace_data.shape | ||
traj[0].shape | ||
|
||
# %% | ||
kspace_data.shape | ||
|
||
# %% | ||
traj[0] | ||
|
||
# %% | ||
data_loader.shape | ||
|
||
# %% | ||
shot_debug = np.load("../debug_traj18.npy") | ||
ksp_debug = np.load("../debug_ksp18.npy") | ||
|
||
# %% | ||
shot_debug.shape | ||
|
||
# %% | ||
shot_debug | ||
|
||
# %% | ||
nufft2 = get_operator(NUFFT_BACKEND)(samples=shot_debug[:,:2]*2*np.pi, shape=(60,72), density="voronoi", n_batchs=4) | ||
adj_debug = nufft2.adj_op(ksp_debug) | ||
plt.imshow(abs(adj_debug[0])) | ||
|
||
# %% | ||
shot=traj[18].copy() | ||
print(shot) | ||
nufft = get_operator(NUFFT_BACKEND)(samples=shot[:,:2], shape=data_loader.shape[:-1], density=None, n_batchs=len(kspace_data)) | ||
nufft.samples = shot[:,:2] | ||
image = nufft.adj_op(kspace_data) | ||
nufft.shape | ||
|
||
# %% | ||
|
||
# %% | ||
print(image.shape) | ||
import numpy as np | ||
image = np.moveaxis(image,0,-1) | ||
image.shape | ||
|
||
# %% | ||
|
||
import matplotlib.pyplot as plt | ||
from snake.toolkit.plotting import axis3dcut | ||
|
||
# %% | ||
from fmri.viz.images import tile_view | ||
|
||
# %% | ||
tile_view(image, samples=10) | ||
|
||
# %% | ||
|
||
# %% | ||
|
||
# %% |