Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

REF: Add tests.groupby.methods #55312

Merged
merged 12 commits into from
Oct 12, 2023
Empty file.
24 changes: 24 additions & 0 deletions pandas/tests/groupby/methods/test_corrwith.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,24 @@
import numpy as np

from pandas import (
DataFrame,
Index,
Series,
)
import pandas._testing as tm


def test_corrwith_with_1_axis():
# GH 47723
jbrockmendel marked this conversation as resolved.
Show resolved Hide resolved
df = DataFrame({"a": [1, 1, 2], "b": [3, 7, 4]})
gb = df.groupby("a")

msg = "DataFrameGroupBy.corrwith with axis=1 is deprecated"
with tm.assert_produces_warning(FutureWarning, match=msg):
result = gb.corrwith(df, axis=1)
index = Index(
data=[(1, 0), (1, 1), (1, 2), (2, 2), (2, 0), (2, 1)],
name=("a", None),
)
expected = Series([np.nan] * 6, index=index)
tm.assert_series_equal(result, expected)
221 changes: 221 additions & 0 deletions pandas/tests/groupby/methods/test_describe.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,221 @@
import numpy as np
import pytest

import pandas as pd
from pandas import (
DataFrame,
Index,
MultiIndex,
Timestamp,
)
import pandas._testing as tm


def test_apply_describe_bug(mframe):
grouped = mframe.groupby(level="first")
grouped.describe() # it works!


def test_series_describe_multikey():
ts = tm.makeTimeSeries()
grouped = ts.groupby([lambda x: x.year, lambda x: x.month])
result = grouped.describe()
tm.assert_series_equal(result["mean"], grouped.mean(), check_names=False)
tm.assert_series_equal(result["std"], grouped.std(), check_names=False)
tm.assert_series_equal(result["min"], grouped.min(), check_names=False)


def test_series_describe_single():
ts = tm.makeTimeSeries()
grouped = ts.groupby(lambda x: x.month)
result = grouped.apply(lambda x: x.describe())
expected = grouped.describe().stack(future_stack=True)
tm.assert_series_equal(result, expected)


@pytest.mark.parametrize("keys", ["key1", ["key1", "key2"]])
def test_series_describe_as_index(as_index, keys):
# GH#49256
df = DataFrame(
{
"key1": ["one", "two", "two", "three", "two"],
"key2": ["one", "two", "two", "three", "two"],
"foo2": [1, 2, 4, 4, 6],
}
)
gb = df.groupby(keys, as_index=as_index)["foo2"]
result = gb.describe()
expected = DataFrame(
{
"key1": ["one", "three", "two"],
"count": [1.0, 1.0, 3.0],
"mean": [1.0, 4.0, 4.0],
"std": [np.nan, np.nan, 2.0],
"min": [1.0, 4.0, 2.0],
"25%": [1.0, 4.0, 3.0],
"50%": [1.0, 4.0, 4.0],
"75%": [1.0, 4.0, 5.0],
"max": [1.0, 4.0, 6.0],
}
)
if len(keys) == 2:
expected.insert(1, "key2", expected["key1"])
if as_index:
expected = expected.set_index(keys)
tm.assert_frame_equal(result, expected)


def test_frame_describe_multikey(tsframe):
grouped = tsframe.groupby([lambda x: x.year, lambda x: x.month])
result = grouped.describe()
desc_groups = []
for col in tsframe:
group = grouped[col].describe()
# GH 17464 - Remove duplicate MultiIndex levels
group_col = MultiIndex(
levels=[[col], group.columns],
codes=[[0] * len(group.columns), range(len(group.columns))],
)
group = DataFrame(group.values, columns=group_col, index=group.index)
desc_groups.append(group)
expected = pd.concat(desc_groups, axis=1)
tm.assert_frame_equal(result, expected)

msg = "DataFrame.groupby with axis=1 is deprecated"
with tm.assert_produces_warning(FutureWarning, match=msg):
groupedT = tsframe.groupby({"A": 0, "B": 0, "C": 1, "D": 1}, axis=1)
result = groupedT.describe()
expected = tsframe.describe().T
# reverting the change from https://github.com/pandas-dev/pandas/pull/35441/
expected.index = MultiIndex(
levels=[[0, 1], expected.index],
codes=[[0, 0, 1, 1], range(len(expected.index))],
)
tm.assert_frame_equal(result, expected)


def test_frame_describe_tupleindex():
# GH 14848 - regression from 0.19.0 to 0.19.1
df1 = DataFrame(
{
"x": [1, 2, 3, 4, 5] * 3,
"y": [10, 20, 30, 40, 50] * 3,
"z": [100, 200, 300, 400, 500] * 3,
}
)
df1["k"] = [(0, 0, 1), (0, 1, 0), (1, 0, 0)] * 5
df2 = df1.rename(columns={"k": "key"})
msg = "Names should be list-like for a MultiIndex"
with pytest.raises(ValueError, match=msg):
df1.groupby("k").describe()
with pytest.raises(ValueError, match=msg):
df2.groupby("key").describe()


def test_frame_describe_unstacked_format():
# GH 4792
prices = {
Timestamp("2011-01-06 10:59:05", tz=None): 24990,
Timestamp("2011-01-06 12:43:33", tz=None): 25499,
Timestamp("2011-01-06 12:54:09", tz=None): 25499,
}
volumes = {
Timestamp("2011-01-06 10:59:05", tz=None): 1500000000,
Timestamp("2011-01-06 12:43:33", tz=None): 5000000000,
Timestamp("2011-01-06 12:54:09", tz=None): 100000000,
}
df = DataFrame({"PRICE": prices, "VOLUME": volumes})
result = df.groupby("PRICE").VOLUME.describe()
data = [
df[df.PRICE == 24990].VOLUME.describe().values.tolist(),
df[df.PRICE == 25499].VOLUME.describe().values.tolist(),
]
expected = DataFrame(
data,
index=Index([24990, 25499], name="PRICE"),
columns=["count", "mean", "std", "min", "25%", "50%", "75%", "max"],
)
tm.assert_frame_equal(result, expected)


@pytest.mark.filterwarnings(
"ignore:"
"indexing past lexsort depth may impact performance:"
"pandas.errors.PerformanceWarning"
)
@pytest.mark.parametrize("as_index", [True, False])
@pytest.mark.parametrize("keys", [["a1"], ["a1", "a2"]])
def test_describe_with_duplicate_output_column_names(as_index, keys):
# GH 35314
df = DataFrame(
{
"a1": [99, 99, 99, 88, 88, 88],
"a2": [99, 99, 99, 88, 88, 88],
"b": [1, 2, 3, 4, 5, 6],
"c": [10, 20, 30, 40, 50, 60],
},
columns=["a1", "a2", "b", "b"],
copy=False,
)
if keys == ["a1"]:
df = df.drop(columns="a2")

expected = (
DataFrame.from_records(
[
("b", "count", 3.0, 3.0),
("b", "mean", 5.0, 2.0),
("b", "std", 1.0, 1.0),
("b", "min", 4.0, 1.0),
("b", "25%", 4.5, 1.5),
("b", "50%", 5.0, 2.0),
("b", "75%", 5.5, 2.5),
("b", "max", 6.0, 3.0),
("b", "count", 3.0, 3.0),
("b", "mean", 5.0, 2.0),
("b", "std", 1.0, 1.0),
("b", "min", 4.0, 1.0),
("b", "25%", 4.5, 1.5),
("b", "50%", 5.0, 2.0),
("b", "75%", 5.5, 2.5),
("b", "max", 6.0, 3.0),
],
)
.set_index([0, 1])
.T
)
expected.columns.names = [None, None]
if len(keys) == 2:
expected.index = MultiIndex(
levels=[[88, 99], [88, 99]], codes=[[0, 1], [0, 1]], names=["a1", "a2"]
)
else:
expected.index = Index([88, 99], name="a1")

if not as_index:
expected = expected.reset_index()

result = df.groupby(keys, as_index=as_index).describe()

tm.assert_frame_equal(result, expected)


def test_describe_duplicate_columns():
# GH#50806
df = DataFrame([[0, 1, 2, 3]])
df.columns = [0, 1, 2, 0]
gb = df.groupby(df[1])
result = gb.describe(percentiles=[])

columns = ["count", "mean", "std", "min", "50%", "max"]
frames = [
DataFrame([[1.0, val, np.nan, val, val, val]], index=[1], columns=columns)
for val in (0.0, 2.0, 3.0)
]
expected = pd.concat(frames, axis=1)
expected.columns = MultiIndex(
levels=[[0, 2], columns],
codes=[6 * [0] + 6 * [1] + 6 * [0], 3 * list(range(6))],
)
expected.index.names = [1]
tm.assert_frame_equal(result, expected)
78 changes: 78 additions & 0 deletions pandas/tests/groupby/methods/test_is_monotonic.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,78 @@
import numpy as np
import pytest

from pandas import (
DataFrame,
Index,
Series,
)
import pandas._testing as tm


@pytest.mark.parametrize(
"in_vals, out_vals",
[
# Basics: strictly increasing (T), strictly decreasing (F),
# abs val increasing (F), non-strictly increasing (T)
([1, 2, 5, 3, 2, 0, 4, 5, -6, 1, 1], [True, False, False, True]),
# Test with inf vals
(
[1, 2.1, np.inf, 3, 2, np.inf, -np.inf, 5, 11, 1, -np.inf],
[True, False, True, False],
),
# Test with nan vals; should always be False
(
[1, 2, np.nan, 3, 2, np.nan, np.nan, 5, -np.inf, 1, np.nan],
[False, False, False, False],
),
],
)
def test_is_monotonic_increasing(in_vals, out_vals):
# GH 17015
source_dict = {
"A": ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11"],
"B": ["a", "a", "a", "b", "b", "b", "c", "c", "c", "d", "d"],
"C": in_vals,
}
df = DataFrame(source_dict)
result = df.groupby("B").C.is_monotonic_increasing
index = Index(list("abcd"), name="B")
expected = Series(index=index, data=out_vals, name="C")
tm.assert_series_equal(result, expected)

# Also check result equal to manually taking x.is_monotonic_increasing.
expected = df.groupby(["B"]).C.apply(lambda x: x.is_monotonic_increasing)
tm.assert_series_equal(result, expected)


@pytest.mark.parametrize(
"in_vals, out_vals",
[
# Basics: strictly decreasing (T), strictly increasing (F),
# abs val decreasing (F), non-strictly increasing (T)
([10, 9, 7, 3, 4, 5, -3, 2, 0, 1, 1], [True, False, False, True]),
# Test with inf vals
(
[np.inf, 1, -np.inf, np.inf, 2, -3, -np.inf, 5, -3, -np.inf, -np.inf],
[True, True, False, True],
),
# Test with nan vals; should always be False
(
[1, 2, np.nan, 3, 2, np.nan, np.nan, 5, -np.inf, 1, np.nan],
[False, False, False, False],
),
],
)
def test_is_monotonic_decreasing(in_vals, out_vals):
# GH 17015
source_dict = {
"A": ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11"],
"B": ["a", "a", "a", "b", "b", "b", "c", "c", "c", "d", "d"],
"C": in_vals,
}

df = DataFrame(source_dict)
result = df.groupby("B").C.is_monotonic_decreasing
index = Index(list("abcd"), name="B")
expected = Series(index=index, data=out_vals, name="C")
tm.assert_series_equal(result, expected)
Loading
Loading