Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

DEPR: na_sentinel in factorize #47157

Merged
merged 26 commits into from
Jun 24, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
26 commits
Select commit Hold shift + click to select a range
552775f
DEPR: na_sentinel in factorize
rhshadrach May 27, 2022
79231e7
WIP
rhshadrach May 27, 2022
c822282
DEPR: na_sentinel in factorize
rhshadrach May 27, 2022
05fa0ca
Fixups
rhshadrach May 28, 2022
f626dd8
Fixups
rhshadrach May 28, 2022
a15e43a
black
rhshadrach May 28, 2022
9a33637
fixup
rhshadrach May 28, 2022
46e7a8d
docs
rhshadrach May 28, 2022
b1edc89
Merge branch 'depr_na_sentinel' of https://github.com/rhshadrach/pand…
rhshadrach May 31, 2022
c8d6fa2
Merge branch 'main' of https://github.com/pandas-dev/pandas into depr…
rhshadrach May 31, 2022
0fd1ea7
newline
rhshadrach May 31, 2022
465ab2b
Warn on class construction, rework pd.factorize warnings
rhshadrach Jun 1, 2022
6b4917c
FutureWarning -> DeprecationWarning
rhshadrach Jun 1, 2022
d8e3d6b
Remove old comment
rhshadrach Jun 1, 2022
0111eef
Merge branch 'main' of https://github.com/pandas-dev/pandas into depr…
rhshadrach Jun 10, 2022
39b3747
backticks in warnings, revert datetimelike, avoid catch_warnings
rhshadrach Jun 10, 2022
5842053
fixup for warnings
rhshadrach Jun 10, 2022
945bb04
mypy fixups
rhshadrach Jun 11, 2022
8f8cb18
Merge branch 'main' of https://github.com/pandas-dev/pandas into depr…
rhshadrach Jun 11, 2022
9630edc
Merge branch 'main' into depr_na_sentinel
jreback Jun 11, 2022
5524d53
Move resolve_na_sentinel
rhshadrach Jun 12, 2022
fcd8a75
Merge branch 'main' of https://github.com/pandas-dev/pandas into depr…
rhshadrach Jun 12, 2022
c615de4
Merge branch 'main' of https://github.com/pandas-dev/pandas into depr…
rhshadrach Jun 19, 2022
80aaf5e
Merge branch 'main' of https://github.com/pandas-dev/pandas into depr…
rhshadrach Jun 23, 2022
dc97a7b
Remove underscores
rhshadrach Jun 24, 2022
eb6d5a1
Merge branch 'main' of https://github.com/pandas-dev/pandas into depr…
rhshadrach Jun 24, 2022
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion doc/source/whatsnew/v1.5.0.rst
Original file line number Diff line number Diff line change
Expand Up @@ -721,8 +721,9 @@ Other Deprecations
- Deprecated the ``closed`` argument in :class:`ArrowInterval` in favor of ``inclusive`` argument; In a future version passing ``closed`` will raise (:issue:`40245`)
- Deprecated allowing ``unit="M"`` or ``unit="Y"`` in :class:`Timestamp` constructor with a non-round float value (:issue:`47267`)
- Deprecated the ``display.column_space`` global configuration option (:issue:`7576`)
- Deprecated the argument ``na_sentinel`` in :func:`factorize`, :meth:`Index.factorize`, and :meth:`.ExtensionArray.factorize`; pass ``use_na_sentinel=True`` instead to use the sentinel ``-1`` for NaN values and ``use_na_sentinel=False`` instead of ``na_sentinel=None`` to encode NaN values (:issue:`46910`)
- Deprecated :meth:`DataFrameGroupBy.transform` not aligning the result when the UDF returned DataFrame (:issue:`45648`)
-


.. ---------------------------------------------------------------------------
.. _whatsnew_150.performance:
Expand Down
102 changes: 90 additions & 12 deletions pandas/core/algorithms.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@
"""
from __future__ import annotations

import inspect
import operator
from textwrap import dedent
from typing import (
Expand All @@ -14,7 +15,7 @@
cast,
final,
)
from warnings import warn
import warnings

import numpy as np

Expand Down Expand Up @@ -586,7 +587,8 @@ def factorize_array(
def factorize(
values,
sort: bool = False,
na_sentinel: int | None = -1,
na_sentinel: int | None | lib.NoDefault = lib.no_default,
use_na_sentinel: bool | lib.NoDefault = lib.no_default,
size_hint: int | None = None,
) -> tuple[np.ndarray, np.ndarray | Index]:
"""
Expand All @@ -604,7 +606,19 @@ def factorize(
Value to mark "not found". If None, will not drop the NaN
from the uniques of the values.

.. deprecated:: 1.5.0
The na_sentinel argument is deprecated and
will be removed in a future version of pandas. Specify use_na_sentinel as
Comment on lines +610 to +611
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
The na_sentinel argument is deprecated and
will be removed in a future version of pandas. Specify use_na_sentinel as
The `na_sentinel` argument is deprecated and
will be removed in a future version of pandas. Specify `use_na_sentinel` as

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I took this to mean use backticks for any argument / code in the warnings. I went and implemented that for all warnings.

either True or False.

.. versionchanged:: 1.1.2

use_na_sentinel : bool, default True
If True, the sentinel -1 will be used for NaN values. If False,
NaN values will be encoded as non-negative integers and will not drop the
NaN from the uniques of the values.

.. versionadded:: 1.5.0
{size_hint}\

Returns
Expand Down Expand Up @@ -652,8 +666,8 @@ def factorize(
>>> uniques
array(['a', 'b', 'c'], dtype=object)

Missing values are indicated in `codes` with `na_sentinel`
(``-1`` by default). Note that missing values are never
When ``use_na_sentinel=True`` (the default), missing values are indicated in
the `codes` with the sentinel value ``-1`` and missing values are not
included in `uniques`.

>>> codes, uniques = pd.factorize(['b', None, 'a', 'c', 'b'])
Expand Down Expand Up @@ -688,16 +702,16 @@ def factorize(
Index(['a', 'c'], dtype='object')

If NaN is in the values, and we want to include NaN in the uniques of the
values, it can be achieved by setting ``na_sentinel=None``.
values, it can be achieved by setting ``use_na_sentinel=False``.

>>> values = np.array([1, 2, 1, np.nan])
>>> codes, uniques = pd.factorize(values) # default: na_sentinel=-1
>>> codes, uniques = pd.factorize(values) # default: use_na_sentinel=True
>>> codes
array([ 0, 1, 0, -1])
>>> uniques
array([1., 2.])

>>> codes, uniques = pd.factorize(values, na_sentinel=None)
>>> codes, uniques = pd.factorize(values, use_na_sentinel=False)
>>> codes
array([0, 1, 0, 2])
>>> uniques
Expand All @@ -712,6 +726,7 @@ def factorize(
# responsible only for factorization. All data coercion, sorting and boxing
# should happen here.

na_sentinel = resolve_na_sentinel(na_sentinel, use_na_sentinel)
if isinstance(values, ABCRangeIndex):
return values.factorize(sort=sort)

Expand All @@ -736,9 +751,22 @@ def factorize(
codes, uniques = values.factorize(sort=sort)
return _re_wrap_factorize(original, uniques, codes)

if not isinstance(values.dtype, np.dtype):
# i.e. ExtensionDtype
codes, uniques = values.factorize(na_sentinel=na_sentinel)
elif not isinstance(values.dtype, np.dtype):
if (
na_sentinel == -1
and "use_na_sentinel" in inspect.signature(values.factorize).parameters
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

why are you inspecting like this? its always passed (with no_default maybe)

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

We're inspecting whether the EA values can accept the new argument "use_na_sentinel". #47157 (comment)

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Might be good to add a comment to that effect

):
# Avoid using catch_warnings when possible
# GH#46910 - TimelikeOps has deprecated signature
codes, uniques = values.factorize( # type: ignore[call-arg]
use_na_sentinel=True
)
else:
with warnings.catch_warnings():
# We've already warned above
warnings.filterwarnings("ignore", ".*use_na_sentinel.*", FutureWarning)
codes, uniques = values.factorize(na_sentinel=na_sentinel)

else:
values = np.asarray(values) # convert DTA/TDA/MultiIndex
codes, uniques = factorize_array(
Expand All @@ -763,6 +791,56 @@ def factorize(
return _re_wrap_factorize(original, uniques, codes)


def resolve_na_sentinel(
na_sentinel: int | None | lib.NoDefault,
use_na_sentinel: bool | lib.NoDefault,
) -> int | None:
"""
Determine value of na_sentinel for factorize methods.

See GH#46910 for details on the deprecation.

Parameters
----------
na_sentinel : int, None, or lib.no_default
Value passed to the method.
use_na_sentinel : bool or lib.no_default
Value passed to the method.

Returns
-------
Resolved value of na_sentinel.
"""
if na_sentinel is not lib.no_default and use_na_sentinel is not lib.no_default:
raise ValueError(
"Cannot specify both `na_sentinel` and `use_na_sentile`; "
f"got `na_sentinel={na_sentinel}` and `use_na_sentinel={use_na_sentinel}`"
)
if na_sentinel is lib.no_default:
result = -1 if use_na_sentinel is lib.no_default or use_na_sentinel else None
else:
if na_sentinel is None:
msg = (
"Specifying `na_sentinel=None` is deprecated, specify "
"`use_na_sentinel=False` instead."
)
elif na_sentinel == -1:
msg = (
"Specifying `na_sentinel=-1` is deprecated, specify "
"`use_na_sentinel=True` instead."
)
else:
msg = (
"Specifying the specific value to use for `na_sentinel` is "
"deprecated and will be removed in a future version of pandas. "
"Specify `use_na_sentinel=True` to use the sentinel value -1, and "
"`use_na_sentinel=False` to encode NaN values."
)
warnings.warn(msg, FutureWarning, stacklevel=find_stack_level())
result = na_sentinel
return result


def _re_wrap_factorize(original, uniques, codes: np.ndarray):
"""
Wrap factorize results in Series or Index depending on original type.
Expand Down Expand Up @@ -956,7 +1034,7 @@ def mode(
try:
npresult = np.sort(npresult)
except TypeError as err:
warn(f"Unable to sort modes: {err}")
warnings.warn(f"Unable to sort modes: {err}")

result = _reconstruct_data(npresult, original.dtype, original)
return result
Expand Down Expand Up @@ -1576,7 +1654,7 @@ def diff(arr, n: int, axis: int = 0):
raise ValueError(f"cannot diff {type(arr).__name__} on axis={axis}")
return op(arr, arr.shift(n))
else:
warn(
warnings.warn(
"dtype lost in 'diff()'. In the future this will raise a "
"TypeError. Convert to a suitable dtype prior to calling 'diff'.",
FutureWarning,
Expand Down
13 changes: 12 additions & 1 deletion pandas/core/arrays/arrow/array.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@

import numpy as np

from pandas._libs import lib
from pandas._typing import (
Dtype,
PositionalIndexer,
Expand All @@ -31,6 +32,7 @@
)
from pandas.core.dtypes.missing import isna

from pandas.core.algorithms import resolve_na_sentinel
from pandas.core.arraylike import OpsMixin
from pandas.core.arrays.base import ExtensionArray
from pandas.core.indexers import (
Expand Down Expand Up @@ -286,7 +288,16 @@ def dropna(self: ArrowExtensionArrayT) -> ArrowExtensionArrayT:
return type(self)(pc.drop_null(self._data))

@doc(ExtensionArray.factorize)
def factorize(self, na_sentinel: int = -1) -> tuple[np.ndarray, ExtensionArray]:
def factorize(
self,
na_sentinel: int | lib.NoDefault = lib.no_default,
use_na_sentinel: bool | lib.NoDefault = lib.no_default,
) -> tuple[np.ndarray, ExtensionArray]:
resolved_na_sentinel = resolve_na_sentinel(na_sentinel, use_na_sentinel)
if resolved_na_sentinel is None:
raise NotImplementedError("Encoding NaN values is not yet implemented")
else:
na_sentinel = resolved_na_sentinel
encoded = self._data.dictionary_encode()
indices = pa.chunked_array(
[c.indices for c in encoded.chunks], type=encoded.type.index_type
Expand Down
45 changes: 44 additions & 1 deletion pandas/core/arrays/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@
"""
from __future__ import annotations

import inspect
import operator
from typing import (
TYPE_CHECKING,
Expand All @@ -20,6 +21,7 @@
cast,
overload,
)
import warnings

import numpy as np

Expand All @@ -45,6 +47,7 @@
cache_readonly,
deprecate_nonkeyword_arguments,
)
from pandas.util._exceptions import find_stack_level
from pandas.util._validators import (
validate_bool_kwarg,
validate_fillna_kwargs,
Expand Down Expand Up @@ -76,6 +79,7 @@
isin,
mode,
rank,
resolve_na_sentinel,
unique,
)
from pandas.core.array_algos.quantile import quantile_with_mask
Expand Down Expand Up @@ -456,6 +460,24 @@ def __ne__(self, other: Any) -> ArrayLike: # type: ignore[override]
"""
return ~(self == other)

def __init_subclass__(cls, **kwargs):
factorize = getattr(cls, "factorize")
if (
"use_na_sentinel" not in inspect.signature(factorize).parameters
# TimelikeOps uses old factorize args to ensure we don't break things
and cls.__name__ not in ("TimelikeOps", "DatetimeArray", "TimedeltaArray")
):
# See GH#46910 for details on the deprecation
name = cls.__name__
warnings.warn(
f"The `na_sentinel` argument of `{name}.factorize` is deprecated. "
f"In the future, pandas will use the `use_na_sentinel` argument "
f"instead. Add this argument to `{name}.factorize` to be compatible "
f"with future versions of pandas and silence this warning.",
DeprecationWarning,
stacklevel=find_stack_level(),
)

def to_numpy(
self,
dtype: npt.DTypeLike | None = None,
Expand Down Expand Up @@ -1002,7 +1024,11 @@ def _values_for_factorize(self) -> tuple[np.ndarray, Any]:
"""
return self.astype(object), np.nan

def factorize(self, na_sentinel: int = -1) -> tuple[np.ndarray, ExtensionArray]:
def factorize(
self,
na_sentinel: int | lib.NoDefault = lib.no_default,
use_na_sentinel: bool | lib.NoDefault = lib.no_default,
) -> tuple[np.ndarray, ExtensionArray]:
"""
Encode the extension array as an enumerated type.

Expand All @@ -1011,6 +1037,18 @@ def factorize(self, na_sentinel: int = -1) -> tuple[np.ndarray, ExtensionArray]:
na_sentinel : int, default -1
Value to use in the `codes` array to indicate missing values.

.. deprecated:: 1.5.0
The na_sentinel argument is deprecated and
will be removed in a future version of pandas. Specify use_na_sentinel
as either True or False.

use_na_sentinel : bool, default True
If True, the sentinel -1 will be used for NaN values. If False,
NaN values will be encoded as non-negative integers and will not drop the
NaN from the uniques of the values.

.. versionadded:: 1.5.0

Returns
-------
codes : ndarray
Expand Down Expand Up @@ -1041,6 +1079,11 @@ def factorize(self, na_sentinel: int = -1) -> tuple[np.ndarray, ExtensionArray]:
# original ExtensionArray.
# 2. ExtensionArray.factorize.
# Complete control over factorization.
resolved_na_sentinel = resolve_na_sentinel(na_sentinel, use_na_sentinel)
if resolved_na_sentinel is None:
raise NotImplementedError("Encoding NaN values is not yet implemented")
else:
na_sentinel = resolved_na_sentinel
arr, na_value = self._values_for_factorize()

codes, uniques = factorize_array(
Expand Down
7 changes: 6 additions & 1 deletion pandas/core/arrays/datetimelike.py
Original file line number Diff line number Diff line change
Expand Up @@ -1996,7 +1996,12 @@ def _with_freq(self, freq):

# --------------------------------------------------------------

def factorize(self, na_sentinel=-1, sort: bool = False):
# GH#46910 - Keep old signature to test we don't break things for EA library authors
def factorize( # type:ignore[override]
self,
na_sentinel: int = -1,
sort: bool = False,
):
if self.freq is not None:
# We must be unique, so can short-circuit (and retain freq)
codes = np.arange(len(self), dtype=np.intp)
Expand Down
11 changes: 10 additions & 1 deletion pandas/core/arrays/masked.py
Original file line number Diff line number Diff line change
Expand Up @@ -869,7 +869,16 @@ def searchsorted(
return self._data.searchsorted(value, side=side, sorter=sorter)

@doc(ExtensionArray.factorize)
def factorize(self, na_sentinel: int = -1) -> tuple[np.ndarray, ExtensionArray]:
def factorize(
self,
na_sentinel: int | lib.NoDefault = lib.no_default,
use_na_sentinel: bool | lib.NoDefault = lib.no_default,
) -> tuple[np.ndarray, ExtensionArray]:
resolved_na_sentinel = algos.resolve_na_sentinel(na_sentinel, use_na_sentinel)
if resolved_na_sentinel is None:
raise NotImplementedError("Encoding NaN values is not yet implemented")
else:
na_sentinel = resolved_na_sentinel
arr = self._data
mask = self._mask

Expand Down
10 changes: 8 additions & 2 deletions pandas/core/arrays/sparse/array.py
Original file line number Diff line number Diff line change
Expand Up @@ -848,13 +848,19 @@ def _values_for_factorize(self):
# Still override this for hash_pandas_object
return np.asarray(self), self.fill_value

def factorize(self, na_sentinel: int = -1) -> tuple[np.ndarray, SparseArray]:
def factorize(
self,
na_sentinel: int | lib.NoDefault = lib.no_default,
use_na_sentinel: bool | lib.NoDefault = lib.no_default,
) -> tuple[np.ndarray, SparseArray]:
# Currently, ExtensionArray.factorize -> Tuple[ndarray, EA]
# The sparsity on this is backwards from what Sparse would want. Want
# ExtensionArray.factorize -> Tuple[EA, EA]
# Given that we have to return a dense array of codes, why bother
# implementing an efficient factorize?
codes, uniques = algos.factorize(np.asarray(self), na_sentinel=na_sentinel)
codes, uniques = algos.factorize(
np.asarray(self), na_sentinel=na_sentinel, use_na_sentinel=use_na_sentinel
)
uniques_sp = SparseArray(uniques, dtype=self.dtype)
return codes, uniques_sp

Expand Down
Loading