Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

BUG: assign doesnt cast SparseDataFrame to DataFrame #19178

Merged
merged 13 commits into from
Feb 12, 2018
1 change: 1 addition & 0 deletions doc/source/whatsnew/v0.23.0.txt
Original file line number Diff line number Diff line change
Expand Up @@ -822,6 +822,7 @@ Sparse
- Bug in which creating a ``SparseDataFrame`` from a dense ``Series`` or an unsupported type raised an uncontrolled exception (:issue:`19374`)
- Bug in :class:`SparseDataFrame.to_csv` causing exception (:issue:`19384`)
- Bug in :class:`SparseSeries.memory_usage` which caused segfault by accessing non sparse elements (:issue:`19368`)
- Bug in constructing a ``SparseArray``: if ``data`` is a scalar and ``index`` is defined it will coerce to ``float64`` regardless of scalar's dtype. (:issue:`19163`)

Reshaping
^^^^^^^^^
Expand Down
9 changes: 5 additions & 4 deletions pandas/core/sparse/array.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,8 @@
is_scalar, is_dtype_equal)
from pandas.core.dtypes.cast import (
maybe_convert_platform, maybe_promote,
astype_nansafe, find_common_type)
astype_nansafe, find_common_type, infer_dtype_from_scalar,
construct_1d_arraylike_from_scalar)
from pandas.core.dtypes.missing import isna, notna, na_value_for_dtype

import pandas._libs.sparse as splib
Expand Down Expand Up @@ -162,9 +163,9 @@ def __new__(cls, data, sparse_index=None, index=None, kind='integer',
data = np.nan
if not is_scalar(data):
raise Exception("must only pass scalars with an index ")
values = np.empty(len(index), dtype='float64')
values.fill(data)
data = values
dtype = infer_dtype_from_scalar(data)[0]
data = construct_1d_arraylike_from_scalar(
data, len(index), dtype)

if isinstance(data, ABCSparseSeries):
data = data.values
Expand Down
11 changes: 11 additions & 0 deletions pandas/tests/sparse/frame/test_frame.py
Original file line number Diff line number Diff line change
Expand Up @@ -1257,3 +1257,14 @@ def test_quantile_multi(self):

tm.assert_frame_equal(result, dense_expected)
tm.assert_sp_frame_equal(result, sparse_expected)

def test_assign_with_sparse_frame(self):
# GH 19163
df = pd.DataFrame({"a": [1, 2, 3]})
res = df.to_sparse(fill_value=False).assign(newcol=False)
exp = df.assign(newcol=False).to_sparse(fill_value=False)

tm.assert_sp_frame_equal(res, exp)

for column in res.columns:
assert type(res[column]) is SparseSeries
15 changes: 15 additions & 0 deletions pandas/tests/sparse/test_array.py
Original file line number Diff line number Diff line change
Expand Up @@ -113,6 +113,21 @@ def test_constructor_spindex_dtype(self):
assert arr.dtype == np.int64
assert arr.fill_value == 0

@pytest.mark.parametrize('scalar,dtype', [
(False, bool),
(0.0, 'float64'),
(1, 'int64'),
('z', 'object')])
def test_scalar_with_index_infer_dtype(self, scalar, dtype):
# GH 19163
arr = SparseArray(scalar, index=[1, 2, 3], fill_value=scalar)
exp = SparseArray([scalar, scalar, scalar], fill_value=scalar)

tm.assert_sp_array_equal(arr, exp)

assert arr.dtype == dtype
assert exp.dtype == dtype

def test_sparseseries_roundtrip(self):
# GH 13999
for kind in ['integer', 'block']:
Expand Down