You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
In [1]: import pandas as pd
In [2]: pd.DataFrame({"A": [1997], "B": pd.Series(["b"], dtype="category").cat.as_ordered()}).groupby("A", as_index=True).agg({"B": "size"})
Out[2]:
B
A
1997 1
In [3]: pd.DataFrame({"A": [1997], "B": pd.Series(["b"], dtype="category").cat.as_ordered()}).groupby("A", as_index=True).agg({"B": "min"})
Out[3]:
B
0 b
Problem description
When aggregating min, max or first of a categorical column, .agg() returns a dataframe with a default index instead of the index returned by groupby().
(This may be related to #13416 ... but I think it's a clear, well-defined bug so maybe easier to resolve?)
In my case, I think I can work around this problem with a hack: if I .agg({"B": ["min", "size"]}) and then ignore the ("B", "size") output column, Pandas will output a dataframe with the correct index.
Expected Output
Out[3]:
B
A
1997 b
Output of pd.show_versions()
INSTALLED VERSIONS
------------------
commit : None
python : 3.7.4.final.0
python-bits : 64
OS : Linux
OS-release : 5.2.11-200.fc30.x86_64
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
While searching for related issue for my other pull request, I found that this issue must have been fixed with another commit in the past (don't know when this issue was fixed).
Code Sample, a copy-pastable example if possible
Problem description
When aggregating
min
,max
orfirst
of a categorical column,.agg()
returns a dataframe with a default index instead of the index returned bygroupby()
.(This may be related to #13416 ... but I think it's a clear, well-defined bug so maybe easier to resolve?)
In my case, I think I can work around this problem with a hack: if I
.agg({"B": ["min", "size"]})
and then ignore the("B", "size")
output column, Pandas will output a dataframe with the correct index.Expected Output
Output of
pd.show_versions()
pandas : 0.25.0
numpy : 1.16.1
pytz : 2018.9
dateutil : 2.8.0
pip : 19.0.3
setuptools : 40.8.0
Cython : 0.29.5
pytest : 4.5.0
hypothesis : None
sphinx : 2.1.1
blosc : None
feather : None
xlsxwriter : None
lxml.etree : 4.2.5
html5lib : 1.0.1
pymysql : None
psycopg2 : 2.8.3 (dt dec pq3 ext lo64)
jinja2 : 2.10.1
IPython : 7.2.0
pandas_datareader: None
bs4 : 4.6.3
bottleneck : None
fastparquet : 0.2.1
gcsfs : None
lxml.etree : 4.2.5
matplotlib : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : 0.14.1
pytables : None
s3fs : None
scipy : None
sqlalchemy : None
tables : None
xarray : None
xlrd : None
xlwt : None
xlsxwriter : None
The text was updated successfully, but these errors were encountered: