Skip to content

Commit

Permalink
added see also sections
Browse files Browse the repository at this point in the history
  • Loading branch information
rgemawat2000 committed Aug 8, 2024
1 parent d0cb205 commit d71d430
Show file tree
Hide file tree
Showing 2 changed files with 21 additions and 3 deletions.
3 changes: 0 additions & 3 deletions ci/code_checks.sh
Original file line number Diff line number Diff line change
Expand Up @@ -284,12 +284,9 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
-i "pandas.api.types.is_iterator PR07,SA01" \
-i "pandas.api.types.is_list_like SA01" \
-i "pandas.api.types.is_named_tuple PR07,SA01" \
-i "pandas.api.types.is_numeric_dtype SA01" \
-i "pandas.api.types.is_object_dtype SA01" \
-i "pandas.api.types.is_period_dtype SA01" \
-i "pandas.api.types.is_re PR07,SA01" \
-i "pandas.api.types.is_re_compilable PR07,SA01" \
-i "pandas.api.types.is_timedelta64_ns_dtype SA01" \
-i "pandas.api.types.pandas_dtype PR07,RT03,SA01" \
-i "pandas.arrays.ArrowExtensionArray PR07,SA01" \
-i "pandas.arrays.BooleanArray SA01" \
Expand Down
21 changes: 21 additions & 0 deletions pandas/core/dtypes/common.py
Original file line number Diff line number Diff line change
Expand Up @@ -412,6 +412,13 @@ def is_period_dtype(arr_or_dtype) -> bool:
boolean
Whether or not the array-like or dtype is of the Period dtype.
See Also
--------
api.types.is_timedelta64_ns_dtype : Check whether the provided array or dtype is
of the timedelta64[ns] dtype.
api.types.is_timedelta64_dtype: Check whether an array-like or dtype
is of the timedelta64 dtype.
Examples
--------
>>> from pandas.core.dtypes.common import is_period_dtype
Expand Down Expand Up @@ -1021,6 +1028,11 @@ def is_timedelta64_ns_dtype(arr_or_dtype) -> bool:
boolean
Whether or not the array or dtype is of the timedelta64[ns] dtype.
See Also
--------
api.types.is_timedelta64_dtype: Check whether an array-like or dtype
is of the timedelta64 dtype.
Examples
--------
>>> from pandas.core.dtypes.common import is_timedelta64_ns_dtype
Expand Down Expand Up @@ -1140,6 +1152,15 @@ def is_numeric_dtype(arr_or_dtype) -> bool:
boolean
Whether or not the array or dtype is of a numeric dtype.
See Also
--------
api.types.is_integer_dtype: Check whether the provided array or dtype
is of an integer dtype.
api.types.is_unsigned_integer_dtype: Check whether the provided array
or dtype is of an unsigned integer dtype.
api.types.is_signed_integer_dtype: Check whether the provided array
or dtype is of an signed integer dtype.
Examples
--------
>>> from pandas.api.types import is_numeric_dtype
Expand Down

0 comments on commit d71d430

Please sign in to comment.