-
-
Notifications
You must be signed in to change notification settings - Fork 18.1k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
REF: Add tests.groupby.methods (#55312)
* REF: Add tests.groupby.methods * Merge cleanup * Refactor * Refactor * Show value of ymin * fixup * Revert * Revert
- Loading branch information
1 parent
ae177e8
commit 9de2a19
Showing
19 changed files
with
1,567 additions
and
1,566 deletions.
There are no files selected for viewing
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,24 @@ | ||
import numpy as np | ||
|
||
from pandas import ( | ||
DataFrame, | ||
Index, | ||
Series, | ||
) | ||
import pandas._testing as tm | ||
|
||
|
||
def test_corrwith_with_1_axis(): | ||
# GH 47723 | ||
df = DataFrame({"a": [1, 1, 2], "b": [3, 7, 4]}) | ||
gb = df.groupby("a") | ||
|
||
msg = "DataFrameGroupBy.corrwith with axis=1 is deprecated" | ||
with tm.assert_produces_warning(FutureWarning, match=msg): | ||
result = gb.corrwith(df, axis=1) | ||
index = Index( | ||
data=[(1, 0), (1, 1), (1, 2), (2, 2), (2, 0), (2, 1)], | ||
name=("a", None), | ||
) | ||
expected = Series([np.nan] * 6, index=index) | ||
tm.assert_series_equal(result, expected) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,221 @@ | ||
import numpy as np | ||
import pytest | ||
|
||
import pandas as pd | ||
from pandas import ( | ||
DataFrame, | ||
Index, | ||
MultiIndex, | ||
Timestamp, | ||
) | ||
import pandas._testing as tm | ||
|
||
|
||
def test_apply_describe_bug(mframe): | ||
grouped = mframe.groupby(level="first") | ||
grouped.describe() # it works! | ||
|
||
|
||
def test_series_describe_multikey(): | ||
ts = tm.makeTimeSeries() | ||
grouped = ts.groupby([lambda x: x.year, lambda x: x.month]) | ||
result = grouped.describe() | ||
tm.assert_series_equal(result["mean"], grouped.mean(), check_names=False) | ||
tm.assert_series_equal(result["std"], grouped.std(), check_names=False) | ||
tm.assert_series_equal(result["min"], grouped.min(), check_names=False) | ||
|
||
|
||
def test_series_describe_single(): | ||
ts = tm.makeTimeSeries() | ||
grouped = ts.groupby(lambda x: x.month) | ||
result = grouped.apply(lambda x: x.describe()) | ||
expected = grouped.describe().stack(future_stack=True) | ||
tm.assert_series_equal(result, expected) | ||
|
||
|
||
@pytest.mark.parametrize("keys", ["key1", ["key1", "key2"]]) | ||
def test_series_describe_as_index(as_index, keys): | ||
# GH#49256 | ||
df = DataFrame( | ||
{ | ||
"key1": ["one", "two", "two", "three", "two"], | ||
"key2": ["one", "two", "two", "three", "two"], | ||
"foo2": [1, 2, 4, 4, 6], | ||
} | ||
) | ||
gb = df.groupby(keys, as_index=as_index)["foo2"] | ||
result = gb.describe() | ||
expected = DataFrame( | ||
{ | ||
"key1": ["one", "three", "two"], | ||
"count": [1.0, 1.0, 3.0], | ||
"mean": [1.0, 4.0, 4.0], | ||
"std": [np.nan, np.nan, 2.0], | ||
"min": [1.0, 4.0, 2.0], | ||
"25%": [1.0, 4.0, 3.0], | ||
"50%": [1.0, 4.0, 4.0], | ||
"75%": [1.0, 4.0, 5.0], | ||
"max": [1.0, 4.0, 6.0], | ||
} | ||
) | ||
if len(keys) == 2: | ||
expected.insert(1, "key2", expected["key1"]) | ||
if as_index: | ||
expected = expected.set_index(keys) | ||
tm.assert_frame_equal(result, expected) | ||
|
||
|
||
def test_frame_describe_multikey(tsframe): | ||
grouped = tsframe.groupby([lambda x: x.year, lambda x: x.month]) | ||
result = grouped.describe() | ||
desc_groups = [] | ||
for col in tsframe: | ||
group = grouped[col].describe() | ||
# GH 17464 - Remove duplicate MultiIndex levels | ||
group_col = MultiIndex( | ||
levels=[[col], group.columns], | ||
codes=[[0] * len(group.columns), range(len(group.columns))], | ||
) | ||
group = DataFrame(group.values, columns=group_col, index=group.index) | ||
desc_groups.append(group) | ||
expected = pd.concat(desc_groups, axis=1) | ||
tm.assert_frame_equal(result, expected) | ||
|
||
msg = "DataFrame.groupby with axis=1 is deprecated" | ||
with tm.assert_produces_warning(FutureWarning, match=msg): | ||
groupedT = tsframe.groupby({"A": 0, "B": 0, "C": 1, "D": 1}, axis=1) | ||
result = groupedT.describe() | ||
expected = tsframe.describe().T | ||
# reverting the change from https://github.com/pandas-dev/pandas/pull/35441/ | ||
expected.index = MultiIndex( | ||
levels=[[0, 1], expected.index], | ||
codes=[[0, 0, 1, 1], range(len(expected.index))], | ||
) | ||
tm.assert_frame_equal(result, expected) | ||
|
||
|
||
def test_frame_describe_tupleindex(): | ||
# GH 14848 - regression from 0.19.0 to 0.19.1 | ||
df1 = DataFrame( | ||
{ | ||
"x": [1, 2, 3, 4, 5] * 3, | ||
"y": [10, 20, 30, 40, 50] * 3, | ||
"z": [100, 200, 300, 400, 500] * 3, | ||
} | ||
) | ||
df1["k"] = [(0, 0, 1), (0, 1, 0), (1, 0, 0)] * 5 | ||
df2 = df1.rename(columns={"k": "key"}) | ||
msg = "Names should be list-like for a MultiIndex" | ||
with pytest.raises(ValueError, match=msg): | ||
df1.groupby("k").describe() | ||
with pytest.raises(ValueError, match=msg): | ||
df2.groupby("key").describe() | ||
|
||
|
||
def test_frame_describe_unstacked_format(): | ||
# GH 4792 | ||
prices = { | ||
Timestamp("2011-01-06 10:59:05", tz=None): 24990, | ||
Timestamp("2011-01-06 12:43:33", tz=None): 25499, | ||
Timestamp("2011-01-06 12:54:09", tz=None): 25499, | ||
} | ||
volumes = { | ||
Timestamp("2011-01-06 10:59:05", tz=None): 1500000000, | ||
Timestamp("2011-01-06 12:43:33", tz=None): 5000000000, | ||
Timestamp("2011-01-06 12:54:09", tz=None): 100000000, | ||
} | ||
df = DataFrame({"PRICE": prices, "VOLUME": volumes}) | ||
result = df.groupby("PRICE").VOLUME.describe() | ||
data = [ | ||
df[df.PRICE == 24990].VOLUME.describe().values.tolist(), | ||
df[df.PRICE == 25499].VOLUME.describe().values.tolist(), | ||
] | ||
expected = DataFrame( | ||
data, | ||
index=Index([24990, 25499], name="PRICE"), | ||
columns=["count", "mean", "std", "min", "25%", "50%", "75%", "max"], | ||
) | ||
tm.assert_frame_equal(result, expected) | ||
|
||
|
||
@pytest.mark.filterwarnings( | ||
"ignore:" | ||
"indexing past lexsort depth may impact performance:" | ||
"pandas.errors.PerformanceWarning" | ||
) | ||
@pytest.mark.parametrize("as_index", [True, False]) | ||
@pytest.mark.parametrize("keys", [["a1"], ["a1", "a2"]]) | ||
def test_describe_with_duplicate_output_column_names(as_index, keys): | ||
# GH 35314 | ||
df = DataFrame( | ||
{ | ||
"a1": [99, 99, 99, 88, 88, 88], | ||
"a2": [99, 99, 99, 88, 88, 88], | ||
"b": [1, 2, 3, 4, 5, 6], | ||
"c": [10, 20, 30, 40, 50, 60], | ||
}, | ||
columns=["a1", "a2", "b", "b"], | ||
copy=False, | ||
) | ||
if keys == ["a1"]: | ||
df = df.drop(columns="a2") | ||
|
||
expected = ( | ||
DataFrame.from_records( | ||
[ | ||
("b", "count", 3.0, 3.0), | ||
("b", "mean", 5.0, 2.0), | ||
("b", "std", 1.0, 1.0), | ||
("b", "min", 4.0, 1.0), | ||
("b", "25%", 4.5, 1.5), | ||
("b", "50%", 5.0, 2.0), | ||
("b", "75%", 5.5, 2.5), | ||
("b", "max", 6.0, 3.0), | ||
("b", "count", 3.0, 3.0), | ||
("b", "mean", 5.0, 2.0), | ||
("b", "std", 1.0, 1.0), | ||
("b", "min", 4.0, 1.0), | ||
("b", "25%", 4.5, 1.5), | ||
("b", "50%", 5.0, 2.0), | ||
("b", "75%", 5.5, 2.5), | ||
("b", "max", 6.0, 3.0), | ||
], | ||
) | ||
.set_index([0, 1]) | ||
.T | ||
) | ||
expected.columns.names = [None, None] | ||
if len(keys) == 2: | ||
expected.index = MultiIndex( | ||
levels=[[88, 99], [88, 99]], codes=[[0, 1], [0, 1]], names=["a1", "a2"] | ||
) | ||
else: | ||
expected.index = Index([88, 99], name="a1") | ||
|
||
if not as_index: | ||
expected = expected.reset_index() | ||
|
||
result = df.groupby(keys, as_index=as_index).describe() | ||
|
||
tm.assert_frame_equal(result, expected) | ||
|
||
|
||
def test_describe_duplicate_columns(): | ||
# GH#50806 | ||
df = DataFrame([[0, 1, 2, 3]]) | ||
df.columns = [0, 1, 2, 0] | ||
gb = df.groupby(df[1]) | ||
result = gb.describe(percentiles=[]) | ||
|
||
columns = ["count", "mean", "std", "min", "50%", "max"] | ||
frames = [ | ||
DataFrame([[1.0, val, np.nan, val, val, val]], index=[1], columns=columns) | ||
for val in (0.0, 2.0, 3.0) | ||
] | ||
expected = pd.concat(frames, axis=1) | ||
expected.columns = MultiIndex( | ||
levels=[[0, 2], columns], | ||
codes=[6 * [0] + 6 * [1] + 6 * [0], 3 * list(range(6))], | ||
) | ||
expected.index.names = [1] | ||
tm.assert_frame_equal(result, expected) |
File renamed without changes.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,78 @@ | ||
import numpy as np | ||
import pytest | ||
|
||
from pandas import ( | ||
DataFrame, | ||
Index, | ||
Series, | ||
) | ||
import pandas._testing as tm | ||
|
||
|
||
@pytest.mark.parametrize( | ||
"in_vals, out_vals", | ||
[ | ||
# Basics: strictly increasing (T), strictly decreasing (F), | ||
# abs val increasing (F), non-strictly increasing (T) | ||
([1, 2, 5, 3, 2, 0, 4, 5, -6, 1, 1], [True, False, False, True]), | ||
# Test with inf vals | ||
( | ||
[1, 2.1, np.inf, 3, 2, np.inf, -np.inf, 5, 11, 1, -np.inf], | ||
[True, False, True, False], | ||
), | ||
# Test with nan vals; should always be False | ||
( | ||
[1, 2, np.nan, 3, 2, np.nan, np.nan, 5, -np.inf, 1, np.nan], | ||
[False, False, False, False], | ||
), | ||
], | ||
) | ||
def test_is_monotonic_increasing(in_vals, out_vals): | ||
# GH 17015 | ||
source_dict = { | ||
"A": ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11"], | ||
"B": ["a", "a", "a", "b", "b", "b", "c", "c", "c", "d", "d"], | ||
"C": in_vals, | ||
} | ||
df = DataFrame(source_dict) | ||
result = df.groupby("B").C.is_monotonic_increasing | ||
index = Index(list("abcd"), name="B") | ||
expected = Series(index=index, data=out_vals, name="C") | ||
tm.assert_series_equal(result, expected) | ||
|
||
# Also check result equal to manually taking x.is_monotonic_increasing. | ||
expected = df.groupby(["B"]).C.apply(lambda x: x.is_monotonic_increasing) | ||
tm.assert_series_equal(result, expected) | ||
|
||
|
||
@pytest.mark.parametrize( | ||
"in_vals, out_vals", | ||
[ | ||
# Basics: strictly decreasing (T), strictly increasing (F), | ||
# abs val decreasing (F), non-strictly increasing (T) | ||
([10, 9, 7, 3, 4, 5, -3, 2, 0, 1, 1], [True, False, False, True]), | ||
# Test with inf vals | ||
( | ||
[np.inf, 1, -np.inf, np.inf, 2, -3, -np.inf, 5, -3, -np.inf, -np.inf], | ||
[True, True, False, True], | ||
), | ||
# Test with nan vals; should always be False | ||
( | ||
[1, 2, np.nan, 3, 2, np.nan, np.nan, 5, -np.inf, 1, np.nan], | ||
[False, False, False, False], | ||
), | ||
], | ||
) | ||
def test_is_monotonic_decreasing(in_vals, out_vals): | ||
# GH 17015 | ||
source_dict = { | ||
"A": ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11"], | ||
"B": ["a", "a", "a", "b", "b", "b", "c", "c", "c", "d", "d"], | ||
"C": in_vals, | ||
} | ||
|
||
df = DataFrame(source_dict) | ||
result = df.groupby("B").C.is_monotonic_decreasing | ||
index = Index(list("abcd"), name="B") | ||
expected = Series(index=index, data=out_vals, name="C") | ||
tm.assert_series_equal(result, expected) |
Oops, something went wrong.