Skip to content

Commit

Permalink
TST: add test for agg on ordered categorical cols (#35630)
Browse files Browse the repository at this point in the history
  • Loading branch information
mathurk1 authored Aug 21, 2020
1 parent 9468071 commit 8bf2bc4
Showing 1 changed file with 79 additions and 0 deletions.
79 changes: 79 additions & 0 deletions pandas/tests/groupby/aggregate/test_aggregate.py
Original file line number Diff line number Diff line change
Expand Up @@ -1063,6 +1063,85 @@ def test_groupby_get_by_index():
pd.testing.assert_frame_equal(res, expected)


@pytest.mark.parametrize(
"grp_col_dict, exp_data",
[
({"nr": "min", "cat_ord": "min"}, {"nr": [1, 5], "cat_ord": ["a", "c"]}),
({"cat_ord": "min"}, {"cat_ord": ["a", "c"]}),
({"nr": "min"}, {"nr": [1, 5]}),
],
)
def test_groupby_single_agg_cat_cols(grp_col_dict, exp_data):
# test single aggregations on ordered categorical cols GHGH27800

# create the result dataframe
input_df = pd.DataFrame(
{
"nr": [1, 2, 3, 4, 5, 6, 7, 8],
"cat_ord": list("aabbccdd"),
"cat": list("aaaabbbb"),
}
)

input_df = input_df.astype({"cat": "category", "cat_ord": "category"})
input_df["cat_ord"] = input_df["cat_ord"].cat.as_ordered()
result_df = input_df.groupby("cat").agg(grp_col_dict)

# create expected dataframe
cat_index = pd.CategoricalIndex(
["a", "b"], categories=["a", "b"], ordered=False, name="cat", dtype="category"
)

expected_df = pd.DataFrame(data=exp_data, index=cat_index)

tm.assert_frame_equal(result_df, expected_df)


@pytest.mark.parametrize(
"grp_col_dict, exp_data",
[
({"nr": ["min", "max"], "cat_ord": "min"}, [(1, 4, "a"), (5, 8, "c")]),
({"nr": "min", "cat_ord": ["min", "max"]}, [(1, "a", "b"), (5, "c", "d")]),
({"cat_ord": ["min", "max"]}, [("a", "b"), ("c", "d")]),
],
)
def test_groupby_combined_aggs_cat_cols(grp_col_dict, exp_data):
# test combined aggregations on ordered categorical cols GH27800

# create the result dataframe
input_df = pd.DataFrame(
{
"nr": [1, 2, 3, 4, 5, 6, 7, 8],
"cat_ord": list("aabbccdd"),
"cat": list("aaaabbbb"),
}
)

input_df = input_df.astype({"cat": "category", "cat_ord": "category"})
input_df["cat_ord"] = input_df["cat_ord"].cat.as_ordered()
result_df = input_df.groupby("cat").agg(grp_col_dict)

# create expected dataframe
cat_index = pd.CategoricalIndex(
["a", "b"], categories=["a", "b"], ordered=False, name="cat", dtype="category"
)

# unpack the grp_col_dict to create the multi-index tuple
# this tuple will be used to create the expected dataframe index
multi_index_list = []
for k, v in grp_col_dict.items():
if isinstance(v, list):
for value in v:
multi_index_list.append([k, value])
else:
multi_index_list.append([k, v])
multi_index = pd.MultiIndex.from_tuples(tuple(multi_index_list))

expected_df = pd.DataFrame(data=exp_data, columns=multi_index, index=cat_index)

tm.assert_frame_equal(result_df, expected_df)


def test_nonagg_agg():
# GH 35490 - Single/Multiple agg of non-agg function give same results
# TODO: agg should raise for functions that don't aggregate
Expand Down

0 comments on commit 8bf2bc4

Please sign in to comment.