Skip to content

Commit

Permalink
Revert "DEPR: Deprecate returning a DataFrame in SeriesApply.apply_st…
Browse files Browse the repository at this point in the history
…andard (#55189)

* Revert "DEPR: Deprecate returning a DataFrame in SeriesApply.apply_standard (#52123)"

This reverts commit fe415f5

* Fix tests

* Add whatsnew

* Add whatsnew

* Add test
  • Loading branch information
phofl authored Sep 19, 2023
1 parent 6d58277 commit 5d8cacd
Show file tree
Hide file tree
Showing 8 changed files with 45 additions and 59 deletions.
10 changes: 5 additions & 5 deletions doc/source/user_guide/cookbook.rst
Original file line number Diff line number Diff line change
Expand Up @@ -794,12 +794,12 @@ Apply
index=["I", "II", "III"],
)
def make_df(ser):
new_vals = [pd.Series(value, name=name) for name, value in ser.items()]
return pd.DataFrame(new_vals)
df_orgz = pd.concat({ind: row.pipe(make_df) for ind, row in df.iterrows()})
def SeriesFromSubList(aList):
return pd.Series(aList)
df_orgz = pd.concat(
{ind: row.apply(SeriesFromSubList) for ind, row in df.iterrows()}
)
df_orgz
`Rolling apply with a DataFrame returning a Series
Expand Down
13 changes: 13 additions & 0 deletions doc/source/user_guide/groupby.rst
Original file line number Diff line number Diff line change
Expand Up @@ -1213,6 +1213,19 @@ The dimension of the returned result can also change:
grouped.apply(f)
``apply`` on a Series can operate on a returned value from the applied function
that is itself a series, and possibly upcast the result to a DataFrame:

.. ipython:: python
def f(x):
return pd.Series([x, x ** 2], index=["x", "x^2"])
s = pd.Series(np.random.rand(5))
s
s.apply(f)
Similar to :ref:`groupby.aggregate.agg`, the resulting dtype will reflect that of the
apply function. If the results from different groups have different dtypes, then
a common dtype will be determined in the same way as ``DataFrame`` construction.
Expand Down
29 changes: 9 additions & 20 deletions doc/source/whatsnew/v0.10.0.rst
Original file line number Diff line number Diff line change
Expand Up @@ -261,26 +261,15 @@ Convenience methods ``ffill`` and ``bfill`` have been added:
function, that is itself a series, and possibly upcast the result to a
DataFrame

.. code-block:: python
>>> def f(x):
... return pd.Series([x, x ** 2], index=["x", "x^2"])
>>>
>>> s = pd.Series(np.random.rand(5))
>>> s
0 0.340445
1 0.984729
2 0.919540
3 0.037772
4 0.861549
dtype: float64
>>> s.apply(f)
x x^2
0 0.340445 0.115903
1 0.984729 0.969691
2 0.919540 0.845555
3 0.037772 0.001427
4 0.861549 0.742267
.. ipython:: python
def f(x):
return pd.Series([x, x ** 2], index=["x", "x^2"])
s = pd.Series(np.random.rand(5))
s
s.apply(f)
- New API functions for working with pandas options (:issue:`2097`):

Expand Down
1 change: 0 additions & 1 deletion doc/source/whatsnew/v2.1.0.rst
Original file line number Diff line number Diff line change
Expand Up @@ -555,7 +555,6 @@ Other Deprecations
- Deprecated behavior of :func:`concat` when :class:`DataFrame` has columns that are all-NA, in a future version these will not be discarded when determining the resulting dtype (:issue:`40893`)
- Deprecated behavior of :meth:`Series.dt.to_pydatetime`, in a future version this will return a :class:`Series` containing python ``datetime`` objects instead of an ``ndarray`` of datetimes; this matches the behavior of other :attr:`Series.dt` properties (:issue:`20306`)
- Deprecated logical operations (``|``, ``&``, ``^``) between pandas objects and dtype-less sequences (e.g. ``list``, ``tuple``), wrap a sequence in a :class:`Series` or NumPy array before operating instead (:issue:`51521`)
- Deprecated making :meth:`Series.apply` return a :class:`DataFrame` when the passed-in callable returns a :class:`Series` object. In the future this will return a :class:`Series` whose values are themselves :class:`Series`. This pattern was very slow and it's recommended to use alternative methods to archive the same goal (:issue:`52116`)
- Deprecated parameter ``convert_type`` in :meth:`Series.apply` (:issue:`52140`)
- Deprecated passing a dictionary to :meth:`.SeriesGroupBy.agg`; pass a list of aggregations instead (:issue:`50684`)
- Deprecated the ``fastpath`` keyword in :class:`Categorical` constructor, use :meth:`Categorical.from_codes` instead (:issue:`20110`)
Expand Down
2 changes: 1 addition & 1 deletion doc/source/whatsnew/v2.1.1.rst
Original file line number Diff line number Diff line change
Expand Up @@ -43,7 +43,7 @@ Bug fixes

Other
~~~~~
-
- Reverted the deprecation that disallowed :meth:`Series.apply` returning a :class:`DataFrame` when the passed-in callable returns a :class:`Series` object (:issue:`52116`)

.. ---------------------------------------------------------------------------
.. _whatsnew_211.contributors:
Expand Down
8 changes: 0 additions & 8 deletions pandas/core/apply.py
Original file line number Diff line number Diff line change
Expand Up @@ -1326,14 +1326,6 @@ def curried(x):
)

if len(mapped) and isinstance(mapped[0], ABCSeries):
warnings.warn(
"Returning a DataFrame from Series.apply when the supplied function "
"returns a Series is deprecated and will be removed in a future "
"version.",
FutureWarning,
stacklevel=find_stack_level(),
) # GH52116

# GH#43986 Need to do list(mapped) in order to get treated as nested
# See also GH#25959 regarding EA support
return obj._constructor_expanddim(list(mapped), index=obj.index)
Expand Down
5 changes: 0 additions & 5 deletions pandas/core/series.py
Original file line number Diff line number Diff line change
Expand Up @@ -4635,11 +4635,6 @@ def apply(
"""
Invoke function on values of Series.
.. deprecated:: 2.1.0
If the result from ``func`` is a ``Series``, wrapping the output in a
``DataFrame`` instead of a ``Series`` has been deprecated.
Can be ufunc (a NumPy function that applies to the entire Series)
or a Python function that only works on single values.
Expand Down
36 changes: 17 additions & 19 deletions pandas/tests/apply/test_series_apply.py
Original file line number Diff line number Diff line change
Expand Up @@ -420,15 +420,20 @@ def test_agg_evaluate_lambdas(string_series):
def test_with_nested_series(datetime_series, op_name):
# GH 2316
# .agg with a reducer and a transform, what to do
msg = "Returning a DataFrame from Series.apply when the supplied function"
with tm.assert_produces_warning(FutureWarning, match=msg):
msg = "cannot aggregate"
warning = FutureWarning if op_name == "agg" else None
with tm.assert_produces_warning(warning, match=msg):
# GH52123
result = getattr(datetime_series, op_name)(
lambda x: Series([x, x**2], index=["x", "x^2"])
)
expected = DataFrame({"x": datetime_series, "x^2": datetime_series**2})
tm.assert_frame_equal(result, expected)

with tm.assert_produces_warning(FutureWarning, match=msg):
result = datetime_series.agg(lambda x: Series([x, x**2], index=["x", "x^2"]))
tm.assert_frame_equal(result, expected)


def test_replicate_describe(string_series):
# this also tests a result set that is all scalars
Expand Down Expand Up @@ -512,10 +517,7 @@ def test_apply_series_on_date_time_index_aware_series(dti, exp, aware):
index = dti.tz_localize("UTC").index
else:
index = dti.index
msg = "Returning a DataFrame from Series.apply when the supplied function"
with tm.assert_produces_warning(FutureWarning, match=msg):
# GH52123
result = Series(index).apply(lambda x: Series([1, 2]))
result = Series(index).apply(lambda x: Series([1, 2]))
tm.assert_frame_equal(result, exp)


Expand Down Expand Up @@ -662,19 +664,7 @@ def test_apply_dictlike_lambda(ops, by_row, expected):
def test_apply_retains_column_name(by_row):
# GH 16380
df = DataFrame({"x": range(3)}, Index(range(3), name="x"))
func = lambda x: Series(range(x + 1), Index(range(x + 1), name="y"))

if not by_row:
# GH53400
msg = "'Series' object cannot be interpreted as an integer"
with pytest.raises(TypeError, match=msg):
df.x.apply(func, by_row=by_row)
return

msg = "Returning a DataFrame from Series.apply when the supplied function"
with tm.assert_produces_warning(FutureWarning, match=msg):
# GH52123
result = df.x.apply(func, by_row=by_row)
result = df.x.apply(lambda x: Series(range(x + 1), Index(range(x + 1), name="y")))
expected = DataFrame(
[[0.0, np.nan, np.nan], [0.0, 1.0, np.nan], [0.0, 1.0, 2.0]],
columns=Index(range(3), name="y"),
Expand All @@ -689,3 +679,11 @@ def test_apply_type():
result = s.apply(type)
expected = Series([int, str, type], index=["a", "b", "c"])
tm.assert_series_equal(result, expected)


def test_series_apply_unpack_nested_data():
# GH#55189
ser = Series([[1, 2, 3], [4, 5, 6, 7]])
result = ser.apply(lambda x: Series(x))
expected = DataFrame({0: [1.0, 4.0], 1: [2.0, 5.0], 2: [3.0, 6.0], 3: [np.nan, 7]})
tm.assert_frame_equal(result, expected)

0 comments on commit 5d8cacd

Please sign in to comment.