Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add hlo_sharding_util::MoveAndMergeShardingTiles. #19128

Merged
merged 1 commit into from
Nov 8, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
51 changes: 51 additions & 0 deletions xla/hlo/utils/hlo_sharding_util.cc
Original file line number Diff line number Diff line change
Expand Up @@ -673,6 +673,57 @@ std::optional<int64_t> GetDominantDevice(
return dominant_device;
}

HloSharding MoveAndMergeShardingTiles(const HloSharding& sharding,
int64_t source_dim, int64_t target_dim) {
CHECK(sharding.IsTiled());

CHECK_NE(source_dim, target_dim);
CHECK_GE(source_dim, 0);
CHECK_GE(target_dim, 0);
CHECK_LT(source_dim, sharding.TiledDataRank());
CHECK_LT(target_dim, sharding.TiledDataRank());

// There are 3 steps to move and merge the sharding tiles. Given the sharding
// with tile assignment [a, b, c, d, e], source_dim = 1, target_dim = 3, the
// steps are:
// 1. Reshape the tile assignment to [a, b, c, d, 1, e] by inserting a 1 after
// the target_dim.
// 2. Transpose the tile assignment to [a, 1, c, d, b, e] by swapping the
// source_dim and inserted dim of size 1.
// 3. Reshape the tile assignment to [a, 1, c, db, e] by merging the
// target_dim and the swapped source_dim.

// Step 1. Adding a dummy dim of size 1 after the target_dim.
std::vector<int64_t> ta_dims_1(
sharding.tile_assignment().dimensions().begin(),
sharding.tile_assignment().dimensions().end());
ta_dims_1.insert(ta_dims_1.begin() + target_dim + 1, 1);
TileAssignment new_tile_assignment =
sharding.tile_assignment().Reshape(ta_dims_1);

// Step 2. Transpose the tile assignment to swap the source_dim and the
// inserted dim of size 1.
std::vector<int> permutation(new_tile_assignment.num_dimensions());
absl::c_iota(permutation, 0);
std::swap(permutation[target_dim + 1],
permutation[source_dim + (source_dim < target_dim ? 0 : 1)]);
new_tile_assignment = new_tile_assignment.Transpose(permutation);

// Step 3. Reshape the tile assignment to merge the target_dim and the swapped
// source_dim.
std::vector<int64_t> ta_dims_2(new_tile_assignment.dimensions().begin(),
new_tile_assignment.dimensions().end());
ta_dims_2[target_dim] *= ta_dims_2[target_dim + 1];
ta_dims_2.erase(ta_dims_2.begin() + target_dim + 1);
new_tile_assignment = new_tile_assignment.Reshape(ta_dims_2);

if (sharding.ReplicateOnLastTileDim()) {
return HloSharding::PartialTile(new_tile_assignment, sharding.metadata());
}
return HloSharding::Subgroup(new_tile_assignment, sharding.subgroup_types(),
sharding.metadata());
}

HloSharding TransposeSharding(const HloSharding& sharding,
absl::Span<const int64_t> dimensions) {
if (sharding.IsTileMaximal() || sharding.IsManual()) {
Expand Down
7 changes: 7 additions & 0 deletions xla/hlo/utils/hlo_sharding_util.h
Original file line number Diff line number Diff line change
Expand Up @@ -108,6 +108,13 @@ std::optional<int64_t> GetMostOccurringDevice(
std::optional<int64_t> GetDominantDevice(
absl::Span<HloComputation* const> computations, double dominant_factor);

// Given a tiled sharding, move the tiles from source_dim and merge it into
// target_dim. For example, given a sharding with tile assignment [a, b, c, d,
// e], source_dim = 1, target_dim = 3, the function will return a sharding with
// tile assignment [a, 1, c, db, e].
HloSharding MoveAndMergeShardingTiles(const HloSharding& sharding,
int64_t source_dim, int64_t target_dim);

// Returns the HloSharding with the tile dimensions and tile assignment
// transposed based on the specified dimension numbers. In case of a tile
// maximal sharding returns the original sharding.
Expand Down
28 changes: 28 additions & 0 deletions xla/hlo/utils/hlo_sharding_util_test.cc
Original file line number Diff line number Diff line change
Expand Up @@ -112,6 +112,34 @@ TEST(HloShardingUtilTest, MergeShardingIfCompatible8) {
HloSharding::Tile(TileAssignment({2, 4}, {2, 2, 2}, {0, 2, 1})));
}

TEST(HloShardingUtilTest, MoveAndMergeShardingTilesPartialTile) {
HloSharding sharding =
HloSharding::PartialTile(TileAssignment({2, 3, 5, 7, 11}));
EXPECT_EQ(MoveAndMergeShardingTiles(sharding, 1, 3),
HloSharding::PartialTile(TileAssignment(
{2, 1, 5, 7 * 3, 11}, {2, 3, 5, 7, 11}, {0, 2, 3, 1, 4})));

EXPECT_EQ(MoveAndMergeShardingTiles(sharding, 3, 1),
HloSharding::PartialTile(TileAssignment(
{2, 3 * 7, 5, 1, 11}, {2, 3, 5, 7, 11}, {0, 1, 3, 2, 4})));
}

TEST(HloShardingUtilTest, MoveAndMergeShardingTilesSubGroup) {
HloSharding sharding =
HloSharding::Subgroup(TileAssignment({2, 3, 5, 7, 11}),
{OpSharding::MANUAL, OpSharding::REPLICATED});
EXPECT_EQ(
MoveAndMergeShardingTiles(sharding, 0, 2),
HloSharding::Subgroup(TileAssignment({1, 3, 5 * 2, 7, 11},
{2, 3, 5, 7, 11}, {1, 2, 0, 3, 4}),
{OpSharding::MANUAL, OpSharding::REPLICATED}));
EXPECT_EQ(
MoveAndMergeShardingTiles(sharding, 2, 0),
HloSharding::Subgroup(TileAssignment({2 * 5, 3, 1, 7, 11},
{2, 3, 5, 7, 11}, {0, 2, 1, 3, 4}),
{OpSharding::MANUAL, OpSharding::REPLICATED}));
}

TEST(HloShardingUtilTest, TransposeShardingReplicated) {
EXPECT_EQ(TransposeSharding(HloSharding::Replicate(), {0, 1, 2}),
HloSharding::Replicate());
Expand Down
Loading